Voltage-gated sodium channels (Na(V)) are critical for initiation of action potentials. Heterozygous loss-of-function mutations in Na(V)1.1 channels cause severe myoclonic epilepsy in infancy (SMEI). Homozygous null Scn1a-/- mice developed ataxia and died on postnatal day (P) 15 but could be sustained to P17.5 with manual feeding. Heterozygous Scn1a+/- mice had spontaneous seizures and sporadic deaths beginning after P21, with a notable dependence on genetic background. Loss of Na(V)1.1 did not change voltage-dependent activation or inactivation of sodium channels in hippocampal neurons. The sodium current density was, however, substantially reduced in inhibitory interneurons of Scn1a+/- and Scn1a-/- mice but not in their excitatory pyramidal neurons. An immunocytochemical survey also showed a specific upregulation of Na(V)1.3 channels in a subset of hippocampal interneurons. Our results indicate that reduced sodium currents in GABAergic inhibitory interneurons in Scn1a+/- heterozygotes may cause the hyperexcitability that leads to epilepsy in patients with SMEI.
Mice lacking the voltage-gated potassium channel alpha subunit, K(V)1.1, display frequent spontaneous seizures throughout adult life. In hippocampal slices from homozygous K(V)1.1 null animals, intrinsic passive properties of CA3 pyramidal cells are normal. However, antidromic action potentials are recruited at lower thresholds in K(V)1.1 null slices. Furthermore, in a subset of slices, mossy fiber stimulation triggers synaptically mediated long-latency epileptiform burst discharges. These data indicate that loss of K(V)1.1 from its normal localization in axons and terminals of the CA3 region results in increased excitability in the CA3 recurrent axon collateral system, perhaps contributing to the limbic and tonic-clonic components of the observed epileptic phenotype. Axonal action potential conduction was altered as well in the sciatic nerve--a deficit potentially related to the pathophysiology of episodic ataxia/myokymia, a disease associated with missense mutations of the human K(V)1.1 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.