Background: Contemporary oxime antidotes to organophosphate poisoning cannot penetrate CNS to reactivate inhibited acetylcholinesterase. Results: Structural, in vitro optimization of ionizable hydroxyiminoacetamido amine acetylcholinesterase reactivators produced superior antidotal responses for VX-, sarin-, paraoxon-, and tabun-exposed mice. Conclusion: Ionizable hydroxyiminoacetamido amines are promising centrally active acetylcholinesterase reactivators. Significance: A mechanism-based iterative refinement of acetylcholinesterase reactivation kinetics coupled with pharmacokinetic analyses yields efficient CNS penetrating antidotes.
Indole-3-carbinol (I3C) is a naturally occurring anticancer agent and has entered clinical trials for cancer prevention. However, the clinical development of I3C has been impeded by its poor metabolic profile. The active components of I3C were used to develop a novel class of indole analogs to optimize I3C's anticancer actions, including blocking growth factor-stimulated Akt activation. The most promising of these analogs, SR13668, exhibited potent oral anticancer activity against various cancers and no significant toxicity.
The distribution, clearance, and bioavailability of (2S,6S)-hydroxynorketamine has been studied in the Wistar rat. The plasma and brain tissue concentrations over time of (2S,6S)-hydroxynorketamine were determined after intravenous (20 mg/kg) and oral (20 mg/kg) administration of (2S,6S)-hydroxynorketamine (n = 3). After intravenous administration, the pharmacokinetic parameters were estimated using noncompartmental analysis and the half-life of drug elimination during the terminal phase (t1/2) was 8.0 ± 4.0 h and the apparent volume of distribution (Vd) was 7352 ± 736 mL/kg, clearance (Cl) was 704 ± 139 mL/h per kg, and the bioavailability was 46.3%. Significant concentrations of (2S,6S)-hydroxynorketamine were measured in brain tissues at 10 min after intravenous administration, ∼30 μg/mL per g tissue which decreased to 6 μg/mL per g tissue at 60 min. The plasma and brain concentrations of (2S,6S)-hydroxynorketamine were also determined after the intravenous administration of (S)-ketamine, where significant plasma and brain tissue concentrations of (2S,6S)-hydroxynorketamine were observed 10 min after administration. The (S)-ketamine metabolites (S)-norketamine, (S)-dehydronorketamine, (2S,6R)-hydroxynorketamine, (2S,5S)-hydroxynorketamine and (2S,4S)-hydroxynorketamine were also detected in both plasma and brain tissue. The enantioselectivity of the conversion of (S)-ketamine and (R)-ketamine to the respective (2,6)-hydroxynorketamine metabolites was also investigated over the first 60 min after intravenous administration. (S)-Ketamine produced significantly greater plasma and brain tissue concentrations of (2S,6S)-hydroxynorketamine relative to the (2R,6R)-hydroxynorketamine observed after the administration of (R)-ketamine. However, the relative brain tissue: plasma concentrations of the enantiomeric (2,6)-hydroxynorketamine metabolites were not significantly different indicating that the penetration of the metabolite is not enantioselective.
SYNOPSIS
We present here a comprehensive in vitro, ex vivo and in vivo study on hydrolytic detoxification of nerve agent and pesticide organophosphates (OPs) catalyzed by purified human butyrylcholinesterase (hBChE) in combination with novel non-pyridinium oxime reactivators. We identified 2-trimethylammonio-6-hydroxybenzaldehyde oxime (TAB2OH) as an efficient reactivator of OP-hBChE conjugates formed by the nerve agents, VX and cyclosarin, and the pesticide, paraoxon. It was also functional in reactivation of sarin and tabun inhibited hBChE. A three to five-fold enhancement of in vitro reactivation of VX, cyclosarin and paraoxon inhibited hBChE was observed, when compared to the commonly used N-methylpyridinium aldoxime reactivator, 2PAM. Kinetic analysis showed the enhancement resulted from improved molecular recognition of corresponding OP-hBChE conjugates by TAB2OH. The unique features of TAB2OH stem from an exocyclic quaternary nitrogen and a hydroxyl, both ortho to an oxime group on a benzene ring. pH dependences reveal participation of the hydroxyl (pKa=7.6) forming an additional ionizing nucleophile to potentiate the oxime (pKa=10) at physiological pH. The TAB2OH protective indices in therapy of sarin and paraoxon exposed mice were enhanced by 30% – 60% when they were treated with a combination of TAB2OH and sub-stoichiometric hBChE. These results establish that oxime-assisted catalysis is feasible for OP bioscavenging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.