JCV viruria was found as frequently in HIV-positive individuals as in control subjects, suggesting that its detection has no clinical value. JCV detection in the blood correlates with immunosuppression and not with PML. The presence of JCV in the CSF is highly sensitive and specific for PML, and a high CSF JC viral load was associated with poor clinical outcome in patients receiving antiretroviral therapy. JCV quantification in the CSF constitutes a potentially important tool for monitoring clinical PML treatment trials.
It is generally thought that an effective vaccine to prevent HIV-1 infection should elicit both strong neutralizing antibody and cytotoxic T lymphocyte responses. We recently demonstrated that potent, boostable, long-lived HIV-1 envelope (Env)-specific cytotoxic T lymphocyte responses can be elicited in rhesus monkeys using plasmidencoded HIV-1 env DNA as the immunogen. In the present study, we show that the addition of HIV-1 Env protein to this regimen as a boosting immunogen generates a high titer neutralizing antibody response in this nonhuman primate species. Moreover, we demonstrate in a pilot study that immunization with HIV-1 env DNA (multiple doses) followed by a final immunization with HIV-1 env DNA plus HIV-1 Env protein (env gene from HXBc2 clone of HIV IIIB; Env protein from parental HIV IIIB) completely protects monkeys from infection after i.v. challenge with a chimeric virus expressing HIV-1 env (HXBc2) on a simian immmunodeficiency virus mac backbone (SHIV-HXBc2). The potent immunity and protection seen in these pilot experiments suggest that a DNA prime͞DNA plus protein boost regimen warrants active investigation as a vaccine strategy to prevent HIV-1 infection.
Evidence suggests that the New World was colonized only 11,000-40,000 years ago by Palaeo-Indians. The descendants of these Palaeo-Indians therefore provide a unique opportunity to study the effects of selection on major histocompatibility complex class I genes over a short period. Here we analyse the class I alleles of the Waorani of South America and the Zuni of North America. Four of the Waorani HLA-B alleles were new functional variants which could be accounted for by intralocus recombination. In contrast, all of the Zuni HLA-A and -B molecules were present in caucasians and orientals. This suggests that the new Waorani HLA-B variants arose in South America. The description of four new HLA-B alleles in the Waorani and another five new HLA-B alleles from two other tribes of South American Amerindians indicates that the HLA-B locus can evolve rapidly in isolated populations. These studies underline the importance of gathering genetic data on endangered native human populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.