Obesity and aging are characterized by decreased insulin sensitivity (IS) and muscle protein synthesis. Intramuscular ceramide accumulation has been implicated in insulin resistance during obesity. We aimed to measure IS, muscle ceramide level, protein synthesis, and activation of intracellular signaling pathways involved in translation initiation in male Wistar young (YR, 6-month) and old (OR, 25-month) rats receiving a low- (LFD) or a high-fat diet (HFD) for 10 weeks. A corresponding cellular approach using C2C12 myotubes treated with palmitate to induce intracellular ceramide deposition was taken. A decreased ability of adipose tissue to store lipids together with a reduced adipocyte diameter and a development of fibrosis were observed in OR after the HFD. Consequently, OR fed the HFD were insulin resistant, showed a strong increase in intramuscular ceramide level and a decrease in muscle protein synthesis associated with increased eIF2α phosphorylation. The accumulation of intramuscular lipids placed a lipid burden on mitochondria and created a disconnect between metabolic and regulating pathways in skeletal muscles of OR. In C2C12 cells, palmitate-induced ceramide accumulation was associated with a decreased protein synthesis together with upregulated eIF2α phosphorylation. In conclusion, a reduced ability to expand adipose tissues was found in OR, reflecting a lower lipid buffering capacity. Muscle mitochondrial activity was affected in OR conferring a reduced ability to oxidize fatty acids entering the muscle cell. Hence, OR were more prone to ectopic muscle lipid accumulation than YR, leading to decreased muscle protein anabolism. This metabolic change is a potential therapeutic target to counter sarcopenic obesity.
The life sciences are currently being transformed by an unprecedented wave of developments in molecular analysis, which include important advances in instrumental analysis as well as biocomputing. In light of the central role played by metabolism in nutrition, metabolomics is rapidly being established as a key analytical tool in human nutritional studies. Consequently, an increasing number of nutritionists integrate metabolomics into their study designs. Within this dynamic landscape, the potential of nutritional metabolomics (nutrimetabolomics) to be translated into a science, which can impact on health policies, still needs to be realized. A key element to reach this goal is the ability of the research community to join, to collectively make the best use of the potential offered by nutritional metabolomics. This article, therefore, provides a methodological description of nutritional metabolomics that reflects on the state-of-the-art techniques used in the laboratories of the Food Biomarker Alliance (funded by the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL)) as well as points of reflections to harmonize this field. It is not intended to be exhaustive but rather to present a pragmatic guidance on metabolomic methodologies, providing readers with useful "tips and tricks" along the analytical workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.