[1] We investigate the respective roles of crustal tectonic shortening and asthenospheric processes on the topography of the High Atlas and surrounding areas (Morocco). The lithospheric structure is modeled with a direct trial-and-error algorithm taking into account gravity (Bouguer and free air), geoid, heat flow, and topography. Three parallel cross sections, crossing the High Atlas and Anti-Atlas ranges, show that the lithosphere is thinned to 60 km below these mountain ranges. An analysis of the effect of the lithospheric thinning allows us to conclude that the whole topography of the Anti-Atlas, which belongs to the Sahara domain, is due to asthenospheric processes. In the High Atlas the lithospheric thinning explains a third of the relief of the western High Atlas, 500 m for a mean altitude of 1500 m, and half of the relief of the central High Atlas, 1000 m for a mean altitude of 2000 m. At the scale of Morocco the domain affected by lithospheric thinning forms an elongated NE-SW strip crossing not only the main structural zones but also the Atlantic margin to the south and the Africa-Eurasia plate boundary to the north. This major lithospheric thinning is associated with Miocene to recent alkaline volcanism and seismicity. We propose that this thermal anomaly is related to a shallow mantle plume, emplaced during middle to late Miocene time, during a period of relative tectonic quiescence.
Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical velocities and topographic features, with widespread uplift at rates of up to~2-2.5 mm/a in the NorthWestern and Central Alps, and~1 mm/a across a continuous region from the Eastern to the SouthWestern Alps. Such a rock uplift rate pattern is at odds with the horizontal velocity field, characterized by shortening and crustal thickening in the Eastern Alps and very limited deformation in the Central and Western Alps. Proposed mechanisms of rock uplift rate include isostatic response to the last deglaciation, long-term erosion, detachment of the Western Alpine slab, as well as lithospheric and surface deflection due to mantle convection. Here, we assess previous work and present new estimates of the contributions from these mechanisms. Given the large range of model estimates, the isostatic adjustment to deglaciation and erosion are sufficient to explain the full observed rate of uplift in the Eastern Alps, which, if correct, would preclude a contribution from horizontal shortening and crustal thickening. Alternatively, uplift is a partitioned response to a range of mechanisms. In the Central and Western Alps, the lithospheric adjustment to deglaciation and erosion likely accounts for roughly half of the rock uplift rate, which points to a noticeable contribution by mantle-related processes such as detachment of the European slab and/or asthenospheric upwelling. While it is difficult to independently constrain the patterns and magnitude of mantle contributions to ongoing Alpine vertical displacements at present, future data should provide additional insights. Regardless, interacting tectonic and surface mass redistribution processes, rather than an individual forcing, best explain ongoing Alpine elevation changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.