Liver regeneration requires spatially and temporally precisely coordinated proliferation of the two major hepatic cell populations, hepatocytes and liver sinusoidal endothelial cells (LSECs), to reconstitute liver structure and function. The underlying mechanisms of this complex molecular cross-talk remain elusive. Here, we show that the expression of Angiopoietin-2 (Ang2) in LSECs is dynamically regulated after partial hepatectomy. During the early inductive phase of liver regeneration, Ang2 down-regulation leads to reduced LSEC transforming growth factor-β1 production, enabling hepatocyte proliferation by releasing an angiocrine proliferative brake. During the later angiogenic phase of liver regeneration, recovery of endothelial Ang2 expression enables regenerative angiogenesis by controlling LSEC vascular endothelial growth factor receptor 2 expression. The data establish LSECs as a dynamic rheostat of liver regeneration, spatiotemporally orchestrating hepatocyte and LSEC proliferation through angiocrine- and autocrine-acting Ang2, respectively.
Endothelial cells (ECs) provide angiocrine factors orchestrating tumor progression. Here, we show that activated Notch1 receptors (N1ICD) are frequently observed in ECs of human carcinomas and melanoma, and in ECs of the pre-metastatic niche in mice. EC N1ICD expression in melanoma correlated with shorter progression-free survival. Sustained N1ICD activity induced EC senescence, expression of chemokines and the adhesion molecule VCAM1. This promoted neutrophil infiltration, tumor cell (TC) adhesion to the endothelium, intravasation, lung colonization, and postsurgical metastasis. Thus, sustained vascular Notch signaling facilitates metastasis by generating a senescent, pro-inflammatory endothelium. Consequently, treatment with Notch1 or VCAM1-blocking antibodies prevented Notch-driven metastasis, and genetic ablation of EC Notch signaling inhibited peritoneal neutrophil infiltration in an ovarian carcinoma mouse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.