The use of digital tools to measure physiological and behavioural variables of potential relevance to mental health is a growing field sitting at the intersection between computer science, engineering, and clinical science. We summarised the literature on remote measuring technologies, mapping methodological challenges and threats to reproducibility, and identified leading digital signals for depression. Medical and computer science databases were searched between January 2007 and November 2019. Published studies linking depression and objective behavioural data obtained from smartphone and wearable device sensors in adults with unipolar depression and healthy subjects were included. A descriptive approach was taken to synthesise study methodologies. We included 51 studies and found threats to reproducibility and transparency arising from failure to provide comprehensive descriptions of recruitment strategies, sample information, feature construction and the determination and handling of missing data. The literature is characterised by small sample sizes, short follow-up duration and great variability in the quality of reporting, limiting the interpretability of pooled results. Bivariate analyses show consistency in statistically significant associations between depression and digital features from sleep, physical activity, location, and phone use data. Machine learning models found the predictive value of aggregated features. Given the pitfalls in the combined literature, these results should be taken purely as a starting point for hypothesis generation. Since this research is ultimately aimed at informing clinical practice, we recommend improvements in reporting standards including consideration of generalisability and reproducibility, such as wider diversity of samples, thorough reporting methodology and the reporting of potential bias in studies with numerous features.
Background Major Depressive Disorder (MDD) is prevalent, often chronic, and requires ongoing monitoring of symptoms to track response to treatment and identify early indicators of relapse. Remote Measurement Technologies (RMT) provide an opportunity to transform the measurement and management of MDD, via data collected from inbuilt smartphone sensors and wearable devices alongside app-based questionnaires and tasks. A key question for the field is the extent to which participants can adhere to research protocols and the completeness of data collected. We aimed to describe drop out and data completeness in a naturalistic multimodal longitudinal RMT study, in people with a history of recurrent MDD. We further aimed to determine whether those experiencing a depressive relapse at baseline contributed less complete data. Methods Remote Assessment of Disease and Relapse – Major Depressive Disorder (RADAR-MDD) is a multi-centre, prospective observational cohort study conducted as part of the Remote Assessment of Disease and Relapse – Central Nervous System (RADAR-CNS) program. People with a history of MDD were provided with a wrist-worn wearable device, and smartphone apps designed to: a) collect data from smartphone sensors; and b) deliver questionnaires, speech tasks, and cognitive assessments. Participants were followed-up for a minimum of 11 months and maximum of 24 months. Results Individuals with a history of MDD (n = 623) were enrolled in the study,. We report 80% completion rates for primary outcome assessments across all follow-up timepoints. 79.8% of people participated for the maximum amount of time available and 20.2% withdrew prematurely. We found no evidence of an association between the severity of depression symptoms at baseline and the availability of data. In total, 110 participants had > 50% data available across all data types. Conclusions RADAR-MDD is the largest multimodal RMT study in the field of mental health. Here, we have shown that collecting RMT data from a clinical population is feasible. We found comparable levels of data availability in active and passive forms of data collection, demonstrating that both are feasible in this patient group.
Background The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes a clinical illness Covid-19, has had a major impact on mental health globally. Those diagnosed with major depressive disorder (MDD) may be negatively impacted by the global pandemic due to social isolation, feelings of loneliness or lack of access to care. This study seeks to assess the impact of the 1st lockdown – pre-, during and post – in adults with a recent history of MDD across multiple centres. Methods This study is a secondary analysis of an on-going cohort study, RADAR-MDD project, a multi-centre study examining the use of remote measurement technology (RMT) in monitoring MDD. Self-reported questionnaire and passive data streams were analysed from participants who had joined the project prior to 1st December 2019 and had completed Patient Health and Self-esteem Questionnaires during the pandemic (n = 252). We used mixed models for repeated measures to estimate trajectories of depressive symptoms, self-esteem, and sleep duration. Results In our sample of 252 participants, 48% (n = 121) had clinically relevant depressive symptoms shortly before the pandemic. For the sample as a whole, we found no evidence that depressive symptoms or self-esteem changed between pre-, during- and post-lockdown. However, we found evidence that mean sleep duration (in minutes) decreased significantly between during- and post- lockdown (− 12.16; 95% CI − 18.39 to − 5.92; p < 0.001). We also found that those experiencing clinically relevant depressive symptoms shortly before the pandemic showed a decrease in depressive symptoms, self-esteem and sleep duration between pre- and during- lockdown (interaction p = 0.047, p = 0.045 and p < 0.001, respectively) as compared to those who were not. Conclusions We identified changes in depressive symptoms and sleep duration over the course of lockdown, some of which varied according to whether participants were experiencing clinically relevant depressive symptoms shortly prior to the pandemic. However, the results of this study suggest that those with MDD do not experience a significant worsening in symptoms during the first months of the Covid − 19 pandemic.
ObjectivesTo characterise the baseline King’s College London Coronavirus Health and Experiences of Colleagues at King’s cohort and describe patterns of probable depression and anxiety among staff and postgraduate research students at a large UK university in April/May 2020.MethodsAn online survey was sent to current staff and postgraduate research students via email in April 2020 (n=2590). Primary outcomes were probable depression and anxiety, measured with the Patient Health Questionnaire-9 and Generalised Anxiety Disorder-7, respectively. Secondary outcomes were alcohol use and perceived change in mental health. Outcomes were described using summary statistics and multivariable Poisson regression was used to explore associations with six groups of predictors: demographics and prior mental health, living arrangements, caring roles, healthcare, occupational factors and COVID-19 infection. All analyses were weighted to account for differences between the sample and target population in terms of age, gender, and ethnicity.ResultsAround 20% of staff members and 30% of postgraduate research students met thresholds for probable depression or anxiety on the questionnaires. This doubled to around 40% among younger respondents aged <25. Other factors associated with probable depression and anxiety included female gender, belonging to an ethnic minority group, caregiving responsibilities and shielding or isolating. Around 20% of participants were found to reach cut-off for hazardous drinking on Alcohol Use Disorders Identification Test, while 30% were drinking more than before the pandemic.ConclusionsOur study shows worrying levels of symptoms of depression, anxiety and alcohol use disorder in an occupational sample from a large UK university in the months following the outbreak of the COVID-19 pandemic.
Background Research in mental health has found associations between depression and individuals’ behaviors and statuses, such as social connections and interactions, working status, mobility, and social isolation and loneliness. These behaviors and statuses can be approximated by the nearby Bluetooth device count (NBDC) detected by Bluetooth sensors in mobile phones. Objective This study aimed to explore the value of the NBDC data in predicting depressive symptom severity as measured via the 8-item Patient Health Questionnaire (PHQ-8). Methods The data used in this paper included 2886 biweekly PHQ-8 records collected from 316 participants recruited from three study sites in the Netherlands, Spain, and the United Kingdom as part of the EU Remote Assessment of Disease and Relapse-Central Nervous System (RADAR-CNS) study. From the NBDC data 2 weeks prior to each PHQ-8 score, we extracted 49 Bluetooth features, including statistical features and nonlinear features for measuring the periodicity and regularity of individuals’ life rhythms. Linear mixed-effect models were used to explore associations between Bluetooth features and the PHQ-8 score. We then applied hierarchical Bayesian linear regression models to predict the PHQ-8 score from the extracted Bluetooth features. Results A number of significant associations were found between Bluetooth features and depressive symptom severity. Generally speaking, along with depressive symptom worsening, one or more of the following changes were found in the preceding 2 weeks of the NBDC data: (1) the amount decreased, (2) the variance decreased, (3) the periodicity (especially the circadian rhythm) decreased, and (4) the NBDC sequence became more irregular. Compared with commonly used machine learning models, the proposed hierarchical Bayesian linear regression model achieved the best prediction metrics (R2=0.526) and a root mean squared error (RMSE) of 3.891. Bluetooth features can explain an extra 18.8% of the variance in the PHQ-8 score relative to the baseline model without Bluetooth features (R2=0.338, RMSE=4.547). Conclusions Our statistical results indicate that the NBDC data have the potential to reflect changes in individuals’ behaviors and statuses concurrent with the changes in the depressive state. The prediction results demonstrate that the NBDC data have a significant value in predicting depressive symptom severity. These findings may have utility for the mental health monitoring practice in real-world settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.