Rust is a major pathogen of the peanut crop. Development and adoption of rust-resistant cultivars is the most cost efficient and effective way to control the spread of the disease and reduce yield losses. Some cultivated peanut germplasm accessions have a degree of resistance, but the secondary gene pool is a source of much stronger resistance alleles. Wild species, however, have undesirable agronomic traits that are a disincentive to their use in breeding. The identification of genomic regions that harbor disease resistance in wild species is the first step in the implementation of marker-assisted selection that can speed the introgression of wild disease resistances and the elimination of linkage drag. In this work, we identify genome regions that control different components of rust resistance in a recombinant inbred line population developed from a cross between two Arachis species, the susceptible most probable B genome ancestor of cultivated peanut, Arachis ipaënsis, and an accession of its closest relative, Arachis magna, which is resistant to rust. Quantitative trait loci for several components of resistance were placed in the same position on linkage group B08. Single-nucleotide polymorphism Kompetitive allele-specific polymerase chain reaction markers for rust resistance region were designed and validated for marker function in both diploid and tetraploid contexts.
Root-knot nematodes (RKN; Meloidogyne sp.) are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea) is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL) located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR) markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.