The academic and behavioral progress of children is associated with the timely development of reading and writing skills. Dysgraphia, characterized as a handwriting learning disability, is usually associated with dyslexia, developmental coordination disorder (dyspraxia), or attention deficit disorder, which are all neuro-developmental disorders. Dysgraphia can seriously impair children in their everyday life and require therapeutic care. Early detection of handwriting difficulties is, therefore, of great importance in pediatrics. Since the beginning of the 20th century, numerous handwriting scales have been developed to assess the quality of handwriting. However, these tests usually involve an expert investigating visually sentences written by a subject on paper, and, therefore, they are subjective, expensive, and scale poorly. Moreover, they ignore potentially important characteristics of motor control such as writing dynamics, pen pressure, or pen tilt. However, with the increasing availability of digital tablets, features to measure these ignored characteristics are now potentially available at scale and very low cost. In this work, we developed a diagnostic tool requiring only a commodity tablet. To this end, we modeled data of 298 children, including 56 with dysgraphia. Children performed the BHK test on a digital tablet covered with a sheet of paper. We extracted 53 handwriting features describing various aspects of handwriting, and used the Random Forest classifier to diagnose dysgraphia. Our method achieved 96.6% sensibility and 99.2% specificity. Given the intra-rater and inter-rater levels of agreement in the BHK test, our technique has comparable accuracy for experts and can be deployed directly as a diagnostics tool.
Handwriting is a complex skill to acquire and it requires years of training to be mastered. Children presenting dysgraphia exhibit difficulties automatizing their handwriting. This can bring anxiety and can negatively impact education. 280 children were recruited in schools and specialized clinics to perform the Concise Evaluation Scale for Children's Handwriting (BHK) on digital tablets. Within this dataset, we identified children with dysgraphia. Twelve digital features describing handwriting through different aspects (static, kinematic, pressure and tilt) were extracted and used to create linear models to investigate handwriting acquisition throughout education. K-means clustering was performed to define a new classification of dysgraphia. Linear models show that three features only (two kinematic and one static) showed a significant association to predict change of handwriting quality in control children. Most kinematic and statics features interacted with age. Results suggest that children with dysgraphia do not simply differ from ones without dysgraphia by quantitative differences on the BHK scale but present a different development in terms of static, kinematic, pressure and tilt features. The K-means clustering yielded 3 clusters (Ci). Children in C1 presented mild dysgraphia usually not detected in schools whereas children in C2 and C3 exhibited severe dysgraphia. Notably, C2 contained individuals displaying abnormalities in term of kinematics and pressure whilst C3 regrouped children showing mainly tilt problems. The current results open new opportunities for automatic detection of children with dysgraphia in classroom. We also believe that the training of pressure and tilt may open new therapeutic opportunities through serious games.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.