Fire is a complex Earth system phenomenon that fundamentally affects vegetation distributions, biogeochemical cycling, climate, and human society across most of Earth's land surface. Fire regimes are currently changing due to multiple interacting global change drivers, most notably climate change, land use, and direct human influences via ignition and suppression. It is therefore critical to better understand the drivers, patterns, and impacts of these changing fire regimes now and continuing into the future. Our review contributes to this focus issue by synthesizing results from 27 studies covering a broad range of topics. Studies are categorized into (i) Understanding contemporary fire patterns, drivers, and effects; (ii) Human influences on fire regimes; (iii) Changes in historical fire regimes; (iv) Future projections; (v) Novel techniques; and (vi) Reviews. We conclude with a discussion on progress made, major remaining research challenges, and recommended directions.
Ecologically dominant species are primary determinants of ecosystem function, especially in grassy ecosystems, but the history and biology of grassy ecosystems in Madagascar are poorly understood compared to those of Africa. Loudetia simplex is a C4 perennial grass that is adapted to fire and common to dominant across Africa. It is also widespread across central Madagascar in what are often thought to be human-derived grasslands, leading us to question how recently L. simplex arrived and how it spread across Madagascar. To address this, we collected population genetic data for 11 nuclear and 11 plastid microsatellite loci, newly developed for this study, for > 200 accessions from 78 populations of L. simplex, primarily from Madagascar and South Africa. Malagasy and African populations are genetically differentiated and harbour distinct plastid lineages. We demonstrate distinct geographically clustered diploid, tetraploid and hexaploid groups. The Malagasy hexaploid populations cluster into northern and southern types. In South Africa, diploid populations in the Drakensberg are distinct from tetraploid populations in north-eastern South Africa. Different genetic clusters are associated with significantly different precipitation and temperature. We conclude that L. simplex is native to both Madagascar and South Africa, probably with a single colonization event from Africa to Madagascar followed by pre-human diversification of L. simplex populations in Madagascar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.