Hypoxia is associated with tissue injury and fibrosis but its functional role in fibroblast activation and tissue repair/regeneration is unknown. Using kidney injury as a model system, we demonstrate that injured epithelial cells produce an increased number of exosomes with defined genetic information to activate fibroblasts. Exosomes released by injured epithelial cells promote proliferation, a-smooth muscle actin expression, F-actin expression, and type I collagen production in fibroblasts. Fibroblast activation is dependent on exosomes delivering TGF-b1 mRNA among other yet to be identified moieties. This study suggests that TGF-b1 mRNA transported by exosomes constitutes a rapid response to initiate tissue repair/regenerative responses and activation of fibroblasts when resident parenchyma is injured. The results also inform potential utility of exosome-targeted therapies to control tissue fibrosis.
Meckel-Gruber syndrome is a severe autosomal, recessively inherited disorder characterized by bilateral renal cystic dysplasia, developmental defects of the central nervous system (most commonly occipital encephalocele), hepatic ductal dysplasia and cysts and polydactyly. MKS is genetically heterogeneous, with three loci mapped: MKS1, 17q21-24 (ref. 4); MKS2, 11q13 (ref. 5) and MKS3 (ref. 6). We have refined MKS3 mapping to a 12.67-Mb interval (8q21.13-q22.1) that is syntenic to the Wpk locus in rat, which is a model with polycystic kidney disease, agenesis of the corpus callosum and hydrocephalus. Positional cloning of the Wpk gene suggested a MKS3 candidate gene, TMEM67, for which we identified pathogenic mutations for five MKS3-linked consanguineous families. MKS3 is a previously uncharacterized, evolutionarily conserved gene that is expressed at moderate levels in fetal brain, liver and kidney but has widespread, low levels of expression. It encodes a 995-amino acid seven-transmembrane receptor protein of unknown function that we have called meckelin.
HIV-1 envelope glycoprotein is the primary target for HIV-1–specific antibodies. The native HIV-1 envelope spike on the virion surface is a trimer, but trimeric gp140 and monomeric gp120 currently are believed to induce comparable immune responses. Indeed, most studies on the immunogenicity of HIV-1 envelope oligomers have revealed only marginal improvement over monomers. We report here that suitably prepared envelope trimers have nearly all the antigenic properties expected for native viral spikes. These stable, rigorously homogenous trimers have antigenic properties markedly different from those of monomeric gp120s derived from the same sequences, and they induce potent neutralizing antibody responses for a cross-clade set of tier 1 and tier 2 viruses with titers substantially higher than those elicited by the corresponding gp120 monomers. These results, which demonstrate that there are relevant immunologic differences between monomers and high-quality envelope trimers, have important implications for HIV-1 vaccine development.
Alport syndrome is a genetic disorder resulting from mutations in type IV collagen genes. The defect results in pathological changes in kidney glomerular and inner-ear basement membranes. In the kidney, progressive glomerulonephritis culminates in tubulointerstitial fibrosis and death. Using gene knockout-mouse models, we demonstrate that two different pathways, one mediated by transforming growth factor (TGF)-beta1 and the other by integrin alpha1beta1, affect Alport glomerular pathogenesis in distinct ways. In Alport mice that are also null for integrin alpha1 expression, expansion of the mesangial matrix and podocyte foot process effacement are attenuated. The novel observation of nonnative laminin isoforms (laminin-2 and/or laminin-4) accumulating in the glomerular basement membrane of Alport mice is markedly reduced in the double knockouts. The second pathway, mediated by TGF-beta1, was blocked using a soluble fusion protein comprising the extracellular domain of the TGF-beta1 type II receptor. This inhibitor prevents focal thickening of the glomerular basement membrane, but does not prevent effacement of the podocyte foot processes. If both integrin alpha1beta1 and TGF-beta1 pathways are functionally inhibited, glomerular foot process and glomerular basement membrane morphology are primarily restored and renal function is markedly improved. These data suggest that integrin alpha1beta1 and TGF-beta1 may provide useful targets for a dual therapy aimed at slowing disease progression in Alport glomerulonephritis.
Meckel syndrome (MKS) is a lethal disorder characterized by renal cystic dysplasia, encephalocele, polydactyly and biliary dysgenesis. It is highly genetically heterogeneous with nine different genes implicated in this disorder. MKS is thought to be a ciliopathy because of the range of phenotypes and localization of some of the implicated proteins. However, limited data are available about the phenotypes associated with MKS1 and MKS3, and the published ciliary data are conflicting. Analysis of the wpk rat model of MKS3 revealed functional defects of the connecting cilium in the eye that resulted in lack of formation of the outer segment, whereas infertile wpk males developed spermatids with very short flagella that did not extend beyond the cell body. In wpk renal collecting duct cysts, cilia were generally longer than normal, with additional evidence of cells with multiple primary cilia and centrosome over-duplication. Kidney tissue and cells from MKS1 and MKS3 patients showed defects in centrosome and cilia number, including multi-ciliated respiratory-like epithelia, and longer cilia. Stable shRNA knockdown of Mks1 and Mks3 in IMCD3 cells induced multi-ciliated and multi-centrosomal phenotypes. These studies demonstrate that MKS1 and MKS3 are ciliopathies, with new cilia-related eye and sperm phenotypes defined. MKS1 and MKS3 functions are required for ciliary structure and function, including a role in regulating length and appropriate number through modulating centrosome duplication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.