Published genetic associations can be used to infer causal relationships between phenotypes, bypassing the need for individual-level genotype or phenotype data. We have curated complete summary data from 1094 genome-wide association studies (GWAS) on diseases and other complex traits into a centralised database, and developed an analytical platform that uses these data to perform Mendelian randomization (MR) tests and sensitivity analyses (MR-Base, http://www.mrbase.org). Combined with curated data of published GWAS hits for phenomic measures, the MR-Base platform enables millions of potential causal relationships to be evaluated. We use the platform to predict the impact of lipid lowering on human health. While our analysis provides evidence that reducing LDL-cholesterol, lipoprotein(a) or triglyceride levels reduce coronary disease risk, it also suggests causal effects on a number of other non-vascular outcomes, indicating potential for adverse-effects or drug repositioning of lipid-lowering therapies.
Birth weight (BW) variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. These associations have been proposed to reflect the lifelong consequences of an adverse intrauterine environment. In earlier work, we demonstrated that much of the negative correlation between BW and adult cardio-metabolic traits could instead be attributable to shared genetic effects. However, that work and other previous studies did not systematically distinguish the direct effects of an individual’s own genotype on BW and subsequent disease risk from indirect effects of their mother’s correlated genotype, mediated by the intrauterine environment. Here, we describe expanded genome-wide association analyses of own BW (n=321,223) and offspring BW (n=230,069 mothers), which identified 278 independent association signals influencing BW (214 novel). We used structural equation modelling to decompose the contributions of direct fetal and indirect maternal genetic influences on BW, implicating fetal- and maternal-specific mechanisms. We used Mendelian randomization to explore the causal relationships between factors influencing BW through fetal or maternal routes, for example, glycemic traits and blood pressure. Direct fetal genotype effects dominate the shared genetic contribution to the association between lower BW and higher type 2 diabetes risk, whereas the relationship between lower BW and higher later blood pressure (BP) is driven by a combination of indirect maternal and direct fetal genetic effects: indirect effects of maternal BP-raising genotypes act to reduce offspring BW, but only direct fetal genotype effects (once inherited) increase the offspring’s later BP. Instrumental variable analysis using maternal BW-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring BP. In successfully separating fetal from maternal genetic effects, this work represents an important advance in genetic studies of perinatal outcomes, and shows that the association between lower BW and higher adult BP is attributable to genetic effects, and not to intrauterine programming.
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency, MAF > 0.05). In a meta-analysis of up to >1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (MAF ≤ 0.01) variant BP associations ( P < 5 × 10 -8 ), of which 32 were in new BP-associated loci and 55 were independent BP-associated SNVs within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci ( e.g. GATA5 , PLCB3 ). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
Aim: Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for in utero exposure in newborns is unknown. Materials & methods: We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers). Results & conclusion: Comparing meta-analyses, we identified numerous signatures specific to newborns along with many shared between newborns and adults. Unique smoking-associated genes in newborns were enriched in xenobiotic metabolism pathways. Our findings may provide insights into specific health impacts of prenatal exposure on offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.