ASIR resulted in noise reduction and significantly impacted image quality. When using a low tube current technique, cardiac CTA reconstruction using 40% or 60% ASIR significantly improved image quality and the proportion of interpretable segments compared with FBP reconstruction.
There was no difference between groups in the use of prospective gating, tube voltage, or scan length. The examinations performed using ASIR had a lower median tube current than those obtained using FBP (median [interquartile range], 450 mA [350-600] vs 650 mA [531-750], respectively; p < 0.001). There was a 44% reduction in the median radiation dose between the FBP and ASIR cohorts (4.1 mSv [2.3-5.2] vs 2.3 mSv [1.9-3.5]; p < 0.001). After adjustment for scan settings, ASIR was associated with a 27% reduction in radiation dose compared with FBP (95% CI, 21-32%; p < 0.001). Despite the reduced current, ASIR was not associated with a difference in adjusted signal, noise, or signal-to-noise ratio (p = not significant). No differences existed between FBP and ASIR for interpretability per coronary artery (98.5% vs 99.3%, respectively; p = 0.12) or per patient (96.1% vs 97.1%, p = 0.65). CONCLUSION. ASIR enabled reduced tube current and lower radiation dose in comparison with FBP, with preserved signal, noise, and study interpretability, in a large multicenter cohort. ASIR represents a new technique to reduce radiation dose in coronary CTA studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.