In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Förster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.
Glycolysis is one of the primordial pathways of metabolism, playing a pivotal role in energy metabolism and biosynthesis. Glycolytic enzymes are known to form transient multi-enzyme assemblies. Here we examine the wider protein-protein interactions of plant glycolytic enzymes and reveal a moonlighting role for specific glycolytic enzymes in mediating the co-localization of mitochondria and chloroplasts. Knockout mutation of phosphoglycerate mutase or enolase resulted in a significantly reduced association of the two organelles. We provide evidence that phosphoglycerate mutase and enolase form a substrate-channelling metabolon which is part of a larger complex of proteins including pyruvate kinase. These results alongside a range of genetic complementation experiments are discussed in the context of our current understanding of chloroplast-mitochondrial interactions within photosynthetic eukaryotes.
Glutamate mutase catalyses an unusual isomerization involving free-radical intermediates that are generated by homolysis of the cobalt-carbon bond of the coenzyme adenosylcobalamin (coenzyme B(12)). A variety of techniques have been used to examine the interaction between the protein and adenosylcobalamin, and between the protein and the products of coenzyme homolysis, cob(II)alamin and 5'-deoxyadenosine. These include equilibrium gel filtration, isothermal titration calorimetry, and resonance Raman, UV-visible and EPR spectroscopies. The thermodynamics of adenosylcobalamin binding to the protein have been examined and appear to be entirely entropy-driven, with DeltaS=109 J.mol(-1).K(-1). The cobalt-carbon bond stretching frequency is unchanged upon coenzyme binding to the protein, arguing against a ground-state destabilization of the cobalt-carbon bond of adenosylcobalamin by the protein. However, reconstitution of the enzyme with cob(II)alamin and 5'-deoxyadenosine, the two stable intermediates formed subsequent to homolysis, results in the blue-shifting of two of the bands comprising the UV-visible spectrum of the corrin ring. The most plausible interpretation of this result is that an interaction between the protein, 5'-deoxyadenosine and cob(II)alamin introduces a distortion into the ring corrin that perturbs its electronic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.