The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z > 1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10 9 M to z ≈ 2, reaching the knee of the ultraviolet luminosity function of galaxies to z ≈ 8. The survey covers approximately 800 arcmin 2 and is divided into two parts. The CANDELS/Deep survey (5σ point-source limit H = 27.7 mag) covers ∼125 arcmin 2 within Great Observatories Origins Deep Survey (GOODS)-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-deep Survey) and covers the full area to a 5σ pointsource limit of H 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered "wedding-cake" approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.
We present an analysis of the deepest Herschel images in four major extragalactic fields GOODS-North, GOODS-South, UDS, and COSMOS obtained within the GOODS-Herschel and CANDELS-Herschel key programs. The star formation picture provided by a total of 10 497 individual far-infrared detections is supplemented by the stacking analysis of a mass complete sample of 62 361 starforming galaxies from the Hubble Space Telescope (HST) H band-selected catalogs of the CANDELS survey and from two deep ground-based K s band-selected catalogs in the GOODS-North and the COSMOS-wide field to obtain one of the most accurate and unbiased understanding to date of the stellar mass growth over the cosmic history. We show, for the first time, that stacking also provides a powerful tool to determine the dispersion of a physical correlation and describe our method called "scatter stacking", which may be easily generalized to other experiments. The combination of direct UV and far-infrared UV-reprocessed light provides a complete census on the star formation rates (SFRs), allowing us to demonstrate that galaxies at z = 4 to 0 of all stellar masses (M * ) follow a universal scaling law, the so-called main sequence of star-forming galaxies. We find a universal close-to-linear slope of the log 10 (SFR)-log 10 (M * ) relation, with evidence for a flattening of the main sequence at high masses (log 10 (M * /M ) > 10.5) that becomes less prominent with increasing redshift and almost vanishes by z 2. This flattening may be due to the parallel stellar growth of quiescent bulges in star-forming galaxies, which mostly happens over the same redshift range. Within the main sequence, we measure a nonvarying SFR dispersion of 0.3 dex: at a fixed redshift and stellar mass, about 68% of star-forming galaxies form stars at a universal rate within a factor 2. The specific SFR (sSFR = SFR/M * ) of star-forming galaxies is found to continuously increase from z = 0 to 4. Finally we discuss the implications of our findings on the cosmic SFR history and on the origin of present-day stars: more than two-thirds of present-day stars must have formed in a regime dominated by the "main sequence" mode. As a consequence we conclude that, although omnipresent in the distant Universe, galaxy mergers had little impact in shaping the global star formation history over the last 12.5 billion years.
We present an analysis of the mid-infrared (MIR) and optical properties of type 1 (broad-line) quasars detected by the Spitzer Space Telescope. The MIR color-redshift relation is characterized to z $ 3, with predictions to z ¼ 7. We demonstrate how combining MIR and optical colors can yield even more efficient selection of active galactic nuclei (AGNs) than MIR or optical colors alone. Composite spectral energy distributions (SEDs) are constructed for 259 quasars with both Sloan Digital Sky Survey and Spitzer photometry, supplemented by near-IR, GALEX, VLA, and ROSAT data, where available. We discuss how the spectral diversity of quasars influences the determination of bolometric luminosities and accretion rates; assuming the mean SED can lead to errors as large as 50% for individual quasars when inferring a bolometric luminosity from an optical luminosity. Finally, we show that careful consideration of the shape of the mean quasar SED and its redshift dependence leads to a lower estimate of the fraction of reddened /obscured AGNs missed by optical surveys as compared to estimates derived from a single mean MIR to optical flux ratio.
This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z ∼ 1.5 − 8, and to study Type Ia SNe beyond z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers ∼ 125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of ∼ 800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.
We analyze star formation (SF) as a function of stellar mass (M ⋆ ) and redshift z in the All Wavelength Extended Groth Strip International Survey (AEGIS). For 2905 field galaxies, complete to 10 10 (10 10.8 )M ⊙ at z < 0.7(1), with Keck spectroscopic redshifts out to z = 1.1, we compile SF rates (SFR) from emission lines, GALEX, and Spitzer MIPS 24µm photometry, optical-NIR M ⋆ measurements, and HST morphologies. Galaxies with reliable signs of SF form a distinct "main sequence (MS)", with a limited range of SFR at a given M ⋆ and z (1σ ±0.3 dex), and log(SFR) approximately proportional to log(M ⋆ ). The range of log(SFR) remains constant to z > 1, while the MS as a whole moves to higher SFR as z increases. The range of SFR along the MS constrains the amplitude of episodic variations of SF, and the effect of mergers on SFR. Typical galaxies spend ∼ 67(95)% of their lifetime since z = 1 within a factor of 2(4) of their average SFR at a given M ⋆ and z. The dominant mode of the evolution of SF since z ∼ 1 is apparently a gradual decline of the average SFR in most individual galaxies, not a decreasing frequency of starburst episodes, or a decreasing factor by which SFR are enhanced in starbursts. LIRGs at z ∼ 1 seem to mostly reflect the high SFR typical for massive galaxies at that epoch. The smooth MS may reflect that the same set of few physical processes governs star formation prior to additional quenching processes. A gradual process like gas exhaustion may play a dominant role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.