Recent advances in multi-electrode array technology have made it possible to monitor large neuronal ensembles at high resolution. In humans, however, current approaches either restrict recordings to only a few neurons per penetrating electrode or combine the signals of thousands of neurons in local field potential (LFP) recordings. Here, we describe a set of techniques which enable simultaneous recording from over 200 well-isolated cortical single units in human participants during intraoperative neurosurgical procedures using Neuropixels silicon probes. We characterized a diversity of extracellular waveforms with eight separable single unit classes, with differing firing rates, positions along the length of the linear electrode array, spatial spread of the waveform, and modulation by LFP events such as inter-ictal discharges and burst suppression. While some additional challenges remain in creating a turn-key system capable of recording, Neuropixels technology could pave the way to studying human-specific cognitive processes and their dysfunction at unprecedented spatiotemporal resolution.
Seizures result from a variety of pathologies and exhibit great diversity in their dynamics. Although many studies have examined the dynamics of seizure initiation, few have investigated the mechanisms leading to seizure termination. We examined intracranial recordings from patients with intractable focal epilepsy to differentiate seizure termination patterns and investigate whether these termination patterns are indicative of different underlying mechanisms. Seizures (n=710) were recorded intracranially from 104 patients and visually classified as focal or secondarily generalized. Only two patterns emerged from this analysis: (a) those that end simultaneously across the brain (synchronous termination), and (b) those whose ictal activity terminates in some regions but continues in others (asynchronous termination). Finally, seizures ended with either an intermittent bursting pattern (burst suppression pattern), or continuous activity (continuous bursting). These findings allowed for a classification and quantification of the burst suppression ratio, absolute energy and network connectivity of all seizures and comparison across different seizure termination patterns. We found that different termination patterns can manifest within a single patient, even in seizures originating from the same onset locations. Most seizures terminate with patterns of burst suppression regardless of generalization but that seizure that secondarily generalize show burst suppression patterns in 90% of cases, while only 60% of focal seizures exhibit burst suppression. Interestingly, we found similar absolute energy and burst suppression ratios in seizures with synchronous and asynchronous termination, while seizures with continuous bursting were found to be different from seizures with burst suppression, showing lower energy during seizure and lower burst suppression ratio at the start and end of seizure. Finally, network density was observed to increase with seizure progression, with significantly lower densities in seizures with continuous bursting compared to seizures with burst suppression. Our study demonstrates that there are a limited number of seizure termination patterns, suggesting that, unlike seizure initiation, the number of mechanisms underlying seizure termination is constrained. The study of termination patterns may provide useful clues about how these seizures may be managed, which in turn may lead to more targeted modes of therapy for seizure control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.