Understanding molecular femtosecond dynamics under intense X-ray exposure is critical to progress in biomolecular imaging and matter under extreme conditions. Imaging viruses and proteins at an atomic spatial scale and on the time scale of atomic motion requires rigorous, quantitative understanding of dynamical effects of intense X-ray exposure. Here we present an experimental and theoretical study of C 60 molecules interacting with intense X-ray pulses from a free-electron laser, revealing the influence of processes not previously reported. Our work illustrates the successful use of classical mechanics to describe all moving particles in C 60 , an approach that scales well to larger systems, for example, biomolecules. Comparisons of the model with experimental data on C 60 ion fragmentation show excellent agreement under a variety of laser conditions. The results indicate that this modelling is applicable for X-ray interactions with any extended system, even at higher X-ray dose rates expected with future light sources.
We have investigated multiphoton multiple ionization dynamics of argon and xenon atoms using a new x-ray free electron laser (XFEL) facility, SPring-8Ångstrom Compact free electron LAser (SACLA) in Japan, and identified that Xe n+ with n up to 26 are produced predominantly via four-photon absorption as well as Ar n+ with n up to 10 are produced via two-photon absorption at a photon energy of 5.5 keV. The absolute fluence of the XFEL pulse, needed for comparison between theory and experiment, has been determined using two-photon processes in the argon atom with the help of benchmark ab initio calculations. Our experimental results, in combination with a newly developed theoretical model for heavy atoms, demonstrate the occurrence of multiphoton absorption involving deep inner shells.
Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.