Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield-a quantity that must be maximized to obtain high efficiency-remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.
presence of aliphatic ligands. [ 7 ] These perovskite nanocrystals are highly luminescent and emit over the full visible range, making them ideal candidates for luminescent display applications. [ 6 ] The synthetic steps are generally straightforward, and the easy control of halide content allows the perovskite bandgaps to be tailored, both by chemical compositions as well as by quantum size effects. So far, perovskite nanocrystals are shown to have color-pure emission, close to unity photoluminescence yield and low lasing thresholds. [ 8 ] These nanocrystals were also attempted in light-emitting devices, but effi ciencies remain modest at 0.12%. [ 9 ] Here, we show the preparation of highly effi cient perovskite light-emitting diodes (PeLED) using solution-processed nanocrystals. We apply a new trimethylaluminum (TMA) vapor-based crosslinking method to render the nanocrystal fi lms insoluble, thereby allowing the deposition of subsequent charge-injection layers without the need for orthogonal solvents. The resulting near-complete nanocrystal fi lm coverage, coupled with the natural confi nement of injected charges within the perovskite crystals, facilitate electron-hole capture and give rise to a remarkable electroluminescence yield of 5.7%. Here, our electron-injection layer comprises a fi lm of zinc oxide (ZnO) nanocrystals, directly deposited on an indium tin oxide (ITO)-coated glass substrate. [ 4 ] The cesium lead halide nanocrystals were solution-coated onto the ZnO fi lm as the emissive layer. Due to the presence of aliphatic ligands on the nanocrystals, the perovskite fi lm remains soluble to organic solvents, which limits the deposition of subsequent chargeinjection layers using solution methods. We employed a new TMA vapor-phase crosslinking technique to fi x the nanocrystal fi lm in place, thereby enabling us to solution-cast a layer of TFB polymer (poly[(9,9-dioctylfl uorenyl-2,7-diyl)-co -(4,4′-( N -(4-sec-butylphenyl)diphenylamine)]) above without washing the nanocrystals off. TFB serves primarily as a hole-injection and electron-blocking layer. A thin, high work-function molybdenum trioxide (MoO 3 ) interlayer and silver electrode were vacuum-thermal evaporated to complete the device.As shown in Figure 1 c,d, our perovskite nanocrystal devices show saturated and color-pure emission. We control the perovskite bandgap, primarily by tailoring the halide composition, and achieve electroluminescence across a wide range of the visi ble spectrum. Our red, orange, green, and blue devices emit at wavelengths of 698, 619, 523, and 480 nm, respectively.
The lack of thermal stability of perovskite solar cells is hindering the progress of this technology towards adoption in the consumer market. Different pathways of thermal degradation are activated at different temperatures in these complex nanostructured hybrid composites. Thus, it is essential to explore the thermal response of the mesosuperstructrured composite device in order to engineer materials and operating protocols. Here we produce devices according to four well established recipes, and characterise their photovoltaic performance as they are heated within the operational range. The devices are analysed using transmission electron microscopy as they are further heated in situ, to monitor changes in morphology and chemical composition. We identify mechanisms for structural and chemical changes, such as iodine and lead migration, which appear to be correlated to the synthesis conditions. In particular, we identify a correlation between exposure of the perovskite layer to air during processing, and elemental diffusion during thermal treatment.
Fully printed wearable electronics based on two-dimensional (2D) material heterojunction structures also known as heterostructures, such as field-effect transistors, require robust and reproducible printed multi-layer stacks consisting of active channel, dielectric and conductive contact layers. Solution processing of graphite and other layered materials provides low-cost inks enabling printed electronic devices, for example by inkjet printing. However, the limited quality of the 2D-material inks, the complexity of the layered arrangement, and the lack of a dielectric 2D-material ink able to operate at room temperature, under strain and after several washing cycles has impeded the fabrication of electronic devices on textile with fully printed 2D heterostructures. Here we demonstrate fully inkjet-printed 2D-material active heterostructures with graphene and hexagonal-boron nitride (h-BN) inks, and use them to fabricate all inkjet-printed flexible and washable field-effect transistors on textile, reaching a field-effect mobility of ~91 cm2 V−1 s−1, at low voltage (<5 V). This enables fully inkjet-printed electronic circuits, such as reprogrammable volatile memory cells, complementary inverters and OR logic gates.
BROADER CONTEXTPerovskite solar cells, which promise to deliver the highest efficiency, lowest cost nextgeneration PV technology, have been largely advanced over the last few years by improvements in the polycrystalline thin film quality. So far, improvements in film uniformity and smoothness, have mainly been at the expense of crystalline grain-size, and charge recombination losses at defect sites. High luminescence efficiency, which is an indication of better optoelectronic quality, has generally been found in films with polycrystalline grains of many micrometres in scale. This suggests a current compromise between ideal morphology and ideal optoelectronic quality.For traditional semiconductors and crystalline solids, the influence of impurity ion doping has been studied extensively and can either alter the crystallisation or induced electronic positive or negative type doping. However, in the perovskite community, impurity doping has been largely unexplored. Here, we show that doping the perovskite solution with Al 3+ , which has a much smaller ionic radius than Pb 2+ , has profoundly positive influenced on the crystalline and optoelectronic quality of the perovskite absorber layer: We demonstrate a two-fold increase in the photoluminescence quantum efficiency and a significantly reduced electronic disorder, despite the films still having polycrystalline grains on the order of one micrometer is scale. This largely overcomes the trade-off between film smoothness and optoelectronic quality, and these improvements translate into highly efficient planar heterojunction perovskite solar cells.Our work paves the way for further improvement of the optoelectronic quality of perovskite thin films, and subsequent devices, via highlighting a new avenue for investigation of the role of dopant impurities upon crystallisation and controlling the electronic defect density in the perovskite thin films. ABSTRACTRealizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices. One of the main challenges is to eliminate the presence of charge recombination centres throughout the film which have been observed to be most densely located at regions near the grain boundaries.Here, we introduce aluminium acetylacetonate to the perovskite precursor solution, which improves the crystal quality by reducing the microstrain in the polycrystalline film. At the same time, we achieve a reduction in the non-radiative recombination rate, a remarkable improvement in the photoluminescence quantum efficiency (PLQE) and a reduction in the electronic disorder deduced from an Urbach energy of only 12.6 meV in complete devices. As a result, we demonstrate a power-conversion efficiency (PCE) of 19.1% with negligible hysteresis in planar heterojunction solar cells comprising all organic p and n-type charge collection layers. Our work shows that...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.