Since 2009, the Working Group on the ‘Anthropocene’ (or, commonly, AWG for Anthropocene Working Group), has been critically analysing the case for formalization of this proposed but still informal geological time unit. The study to date has mainly involved establishing the overall nature of the Anthropocene as a potential chronostratigraphic/geochronologic unit, and exploring the stratigraphic proxies, including several that are novel in geology, that might be applied to its characterization and definition. A preliminary summary of evidence and interim recommendations was presented by the Working Group at the 35th International Geological Congress in Cape Town, South Africa, in August 2016, together with results of voting by members of the AWG indicating the current balance of opinion on major questions surrounding the Anthropocene. The majority opinion within the AWG holds the Anthropocene to be stratigraphically real, and recommends formalization at epoch/series rank based on a mid-20th century boundary. Work is proceeding towards a formal proposal based upon selection of an appropriate Global boundary Stratotype Section and Point (GSSP), as well as auxiliary stratotypes. Among the array of proxies that might be used as a primary marker, anthropogenic radionuclides associated with nuclear arms testing are the most promising; potential secondary markers include plastic, carbon isotope patterns and industrial fly ash. All these proxies have excellent global or near-global correlation potential in a wide variety of sedimentary bodies, both marine and non-marine
Since the first prehistoric people started to dig for stone to make implements, rather than pick up loose material, humans have modified the landscape through excavation of rock and soil, generation of waste and creation of artificial ground. In Great Britain over the past 200 years, people have excavated, moved and built up the equivalent of at least six times the volume of Ben Nevis. It is estimated that the worldwide deliberate annual shift of sediment by human activity is 57 000 Mt (million tonnes) and exceeds that of transport by rivers to the oceans (22 000 Mt) almost by a factor of three. Humans sculpt and transform the landscape through the physical modification of the shape and properties of the ground. As such, humans are geological and geomorphological agents and the dominant factor in landscape evolution through settlement and widespread industrialization and urbanization. The most significant impact of this has been since the onset of the Industrial Revolution in the eighteenth century, coincident with increased release of greenhouse gases to the atmosphere. The anthropogenic sedimentological record, therefore, provides a marker on which to characterize the Anthropocene.
Across a large proportion of Earth's ice-free land surfaces, a solid-phase stratigraphic boundary marks the division between humanly modified ground and natural geological
We assess the scale and extent of the physical technosphere, defined here as the summed material output of the contemporary human enterprise. It includes active urban, agricultural and marine components, used to sustain energy and material flow for current human life, and a growing residue layer, currently only in small part recycled back into the active component. Preliminary estimates suggest a technosphere mass of approximately 30 trillion tonnes (Tt), which helps support a human biomass that, despite recent growth, is ~5 orders of magnitude smaller. The physical technosphere includes a large, rapidly growing diversity of complex objects that are potential trace fossils or ‘technofossils’. If assessed on palaeontological criteria, technofossil diversity already exceeds known estimates of biological diversity as measured by richness, far exceeds recognized fossil diversity, and may exceed total biological diversity through Earth’s history. The rapid transformation of much of Earth’s surface mass into the technosphere and its myriad components underscores the novelty of the current planetary transformation.
This paper responds to and supports the earlier ‘Three Flaws’ paper by William Ruddiman (this journal, 2018). It builds upon his critique of the method used by the Anthropocene Working Group in determining the start date of the Anthropocene. While chronostratigraphy is acknowledged as the best means of establishing a framework for the division of deep time – on geological timescales of millions of years – it is argued that the method is unsuitable for use on archaeological and historical timescales. Close proximity in time between the chronostratigraphic observer and the stratigraphic boundary in question renders the placement of a precisely defined, globally synchronous timeline onto highly time-transgressive evidence inappropriate on these scales of analysis. Application of the method hinders rather than helps understanding of the role of human impact on Earth System change; it leads to a loss of the bigger picture and to relative neglect of the crucial evidence provided by humanly modified ground – the missing strata in most chronostratigraphic accounts of the Anthropocene start. A more ground-up approach is called for. Recognition of humans as geological agents needs to be accompanied by recognition of the distinctive traces of human agency in the ground, which are unprecedented in the stratigraphic records of earlier geological time periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.