SummaryThe most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.
The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2 hum ), cortico-basal ganglia circuits are specifically affected. Here we demonstrate marked effects of this humanization of Foxp2 on learning and striatal neuroplasticity. Foxp2 hum/hum mice learn stimulus-response associations faster than their WT littermates in situations in which declarative (i.e., place-based) and procedural (i.e., response-based) forms of learning could compete during transitions toward proceduralization of action sequences. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2 hum/hum mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostriatal systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.T he gene encoding the transcription factor forkhead box P2 (FOXP2) is a promising candidate for investigating the evolutionary basis of human speech and language capabilities. Humans carrying only one functional copy of this transcription factor experience difficulties in learning and performing complex orofacial movements and have receptive and expressive deficits in oral and written language, whereas other cognitive skills are less affected. These speech and language deficits are associated with functional impairments in cortico-basal ganglia and corticocerebellar circuits (1). Since the time that the human and chimpanzee lineages separated, approximately 6 Mya, two amino acid substitutions have occurred in FOXP2, a higher rate of change than expected given its conservation in mammals (2, 3). Mice in which the endogenous Foxp2 gene has been "humanized" for these two amino acid changes (Foxp2 hum/hum mice) exhibit prominent neurochemical, neurophysiological, and neuroanatomical alterations in the striatum and related cortico-basal ganglia circuits (4, 5). These circuits are known to be essential for acquiring habits and other motor and cognitive behaviors (6), including vocal learning in songbirds (7) and speech and language capabilities in humans (8). However, whether learning behavior depending on these circuits is affected in Foxp2 hum/hum mice has so far not been investigated.A key functional distinction has been made between subregions of the striatum that underlie modes o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.