Pyridoxine‐dependent epilepsy (PDE‐ALDH7A1) is an autosomal recessive condition due to a deficiency of α‐aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE‐ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE‐ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine‐restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine‐reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re‐evaluate and update the two previously published recommendations for diagnosis, treatment, and follow‐up of patients with PDE‐ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus‐based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE‐ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE‐ALDH7A1 are provided.
Growth issues have been observed in young children with phenylketonuria (PKU), but studies are conflicting. In infancy, there is an increasing trend to introduce a second-stage semi-solid weaning protein substitute (WPS) but there is concern that this may not meet energy requirements. In this longitudinal, prospective study, 20 children with PKU transitioning to a WPS, and 20 non-PKU controls were observed monthly from weaning commencement (4–6 months) to 12 m and at 15, 18 and 24 months of age for: weight, length, head circumference, body mass index (BMI), energy and macronutrient intake. Growth parameters were within normal range at all ages in both groups with no significant difference in mean z-scores except for accelerated length in the PKU group. No child with PKU had z-scores < −2 for any growth parameter at age 2 years. Total protein and energy intake in both groups were similar at all ages; however, from 12–24 months in the PKU group, the percentage of energy intake from carbohydrate increased (60%) but from fat decreased (25%) and inversely for controls (48% and 36%). In PKU, use of low volume WPS meets Phe-free protein requirements, facilitates transition to solid foods and supports normal growth. Further longitudinal study of growth, body composition and energy/nutrient intakes in early childhood are required to identify any changing trends.
The HETF techniques of caregivers of children with IMD declined over time. Caregivers need to understand that HETF, particularly in IMD, is a serious procedure associated with life-threatening risks. Poor HETF practices may cause feed contamination, incorrect feed concentration, feed intolerance, aspiration, peritonitis and even metabolic decompensation. HETF skills should be reassessed annually, with compulsory retraining if basic 'core' HETF competencies are not demonstrated.
The nutritional composition of special low protein foods (SLPFs) is controlled under EU legislation for ‘Foods for Special Medical Purposes (FSMP)’. They are designed to meet the energy needs of patients unable to eat a normal protein containing diet. In phenylketonuria (PKU), the macronutrient contribution of SLPFs has been inadequately examined. Aim: A 3-year longitudinal prospective study investigating the contribution of SLPFs to the macronutrient intake of children with early treated PKU. Methods: 48 children (27 boys) with a mean recruitment age of 9.3 y were studied. Semi-quantitative dietary assessments and food frequency questionnaires (FFQ) were collected three to four times/year for 3 years. Results: The mean energy intake provided by SLPFs was 33% (SD ± 8), and this figure was 42% (SD ± 13) for normal food and 21% (SD ± 5) for protein substitutes (PS). SLPFs supplied a mean intake of 40% carbohydrate (SD ± 10), 51% starch (SD ± 18), 21% sugar (SD ± 8), and 38% fat (SD ± 13). Fibre intake met 83% of the Scientific Advisory Committee on Nutrition (SACN) reference value, with 50% coming from SLPFs with added gums and hydrocolloids. Low protein bread, pasta and milk provided the highest energy contribution, and the intake of sweet SLPFs (e.g., biscuits, cakes, and chocolate) was minimal. Children averaged three portions fruit/vegetable daily, and children aged ≥ 12 y had irregular meal patterns. Conclusion: SLPFs provide essential energy in phenylalanine restricted diets. Optimising the nutritional quality of SLPFs deserves more attention.
Protein substitutes developed for phenylketonuria (PKU) are a synthetic source of protein commonly based on L-amino acids. They are essential in the treatment of phenylketonuria (PKU) and other amino acid disorders, allowing the antagonistic amino acid to be removed but with the safe provision of all other amino acids necessary for maintaining normal physiological function. They were first formulated by a chemist and used experimentally on a 2-year-old girl with PKU and their nutritional formulations and design have improved over time. Since 2008, a bioactive macropeptide has been used as a base for protein substitutes in PKU, with potential benefits of improved bone and gut health, nitrogen retention, and blood phenylalanine control. In 2018, animal studies showed that physiomimic technology coating the amino acids with a polymer allows a slow release of amino acids with an improved physiological profile. History has shown that in PKU, the protein substitute’s efficacy is determined by its nutritional profile, amino acid composition, dose, timing, distribution, and an adequate energy intake. Protein substitutes are often given little importance, yet their pharmacological actions and clinical benefit are pivotal when managing PKU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.