Avoidance of apoptosis is critical for the development and sustained growth of tumours. The pro-survival protein myeloid cell leukemia 1 (MCL1) is overexpressed in many cancers, but the development of small molecules targeting this protein that are amenable for clinical testing has been challenging. Here we describe S63845, a small molecule that specifically binds with high affinity to the BH3-binding groove of MCL1. Our mechanistic studies demonstrate that S63845 potently kills MCL1-dependent cancer cells, including multiple myeloma, leukaemia and lymphoma cells, by activating the BAX/BAK-dependent mitochondrial apoptotic pathway. In vivo, S63845 shows potent anti-tumour activity with an acceptable safety margin as a single agent in several cancers. Moreover, MCL1 inhibition, either alone or in combination with other anti-cancer drugs, proved effective against several solid cancer-derived cell lines. These results point towards MCL1 as a target for the treatment of a wide range of tumours.
Intrinsic apoptosis is critical to prevent tumor formation and is engaged by many anti-cancer agents to eliminate tumor cells. BAX and BAK, the two essential mediators of apoptosis, are thought to be regulated through similar mechanisms and act redundantly to drive apoptotic cell death. From an unbiased genome-wide CRISPR/Cas9 screen, we identified VDAC2 (voltage-dependent anion channel 2) as important for BAX, but not BAK, to function. Genetic deletion of VDAC2 abrogated the association of BAX and BAK with mitochondrial complexes containing VDAC1, VDAC2, and VDAC3, but only inhibited BAX apoptotic function. Deleting VDAC2 phenocopied the loss of BAX in impairing both the killing of tumor cells by anti-cancer agents and the ability to suppress tumor formation. Together, our studies show that efficient BAX-mediated apoptosis depends on VDAC2, and reveal a striking difference in how BAX and BAK are functionally impacted by their interactions with VDAC2.
Selective targeting of BCL2 with the BH3-mimetic venetoclax is proving transformative for patients with various leukemias. TP53 controls apoptosis upstream from where BCL2 and its pro-survival relatives, such as MCL1, act. Therefore, targeting these pro-survival proteins could trigger apoptosis across diverse blood cancers, irrespective of TP53 mutation status. Indeed, targeting BCL2 has produced clinically relevant responses in blood cancers with aberrant TP53. However, we show that TP53 mutated or deficient myeloid and lymphoid leukemias outcompete isogenic controls with intact TP53, unless sufficient concentrations of BH3-mimetics targeting BCL2 or MCL1 are applied. Strikingly, tumor cells with TP53 dysfunction escape and thrive over time if inhibition of BCL2 or MCL1 is sub-lethal, in part because of an increased threshold for BAX/BAK activation in these cells. Our study reveals the key role of TP53 in shaping long-term responses to BH3-mimetic drugs and reconciles the disparate pattern of initial clinical response to venetoclax, followed by subsequent treatment failure among patients with TP53-mutant chronic lymphocytic leukemia (CLL) or acute myeloid leukemia (AML). In contrast to BH3-mimetics targeting just BCL2 or MCL1 at doses which are individually sub-lethal, we find that a combined BH3-mimetic approach targeting both pro-survival proteins enhances lethality and durably suppresses leukemic burden, regardless of TP53 mutation status. Our findings highlight the importance of employing sufficiently lethal treatment strategies to maximize outcomes for patients with TP53-mutant disease. In addition, our findings caution against use of sub-lethal BH3-mimetic drug regimens, which may enhance the risk of disease progression driven by emergent TP53 mutant clones.
Pro-survival BCL-2 family members protect cells from programmed cell death that can be induced by multiple internal or external cues. Within the haematopoietic lineages, the BCL-2 family members BCL-2, BCL-XL and MCL-1 are known to support cell survival but the individual and overlapping roles of these pro-survival BCL-2 proteins for the persistence of individual leukocyte subsets in vivo has not yet been determined. By combining inducible knockout mouse models with the BH3-mimetic compound ABT-737, which inhibits BCL-2, BCL-XL and BCL-W, we found that dependency on MCL-1, BCL-XL or BCL-2 expression changes during B-cell development. We show that BCL-XL expression promotes survival of immature B cells, expression of BCL-2 is important for survival of mature B cells and long-lived plasma cells (PC), and expression of MCL-1 is important for survival throughout B-cell development. These data were confirmed with novel highly specific BH3-mimetic compounds that target either BCL-2, BCL-XL or MCL-1. In addition, we observed that combined inhibition of these pro-survival proteins acts in concert to delete specific B-cell subsets. Reduced expression of MCL-1 further sensitized immature as well as transitional B cells and splenic PC to loss of BCL-XL expression. More markedly, loss of MCL-1 greatly sensitizes PC populations to BCL-2 inhibition using ABT-737, even though the total wild-type PC pool in the spleen is not significantly affected by this drug and the bone marrow (BM) PC population only slightly. Combined loss or inhibition of MCL-1 and BCL-2 reduced the numbers of established PC >100-fold within days. Our data suggest that combination treatment targeting these pro-survival proteins could be advantageous for treatment of antibody-mediated autoimmune diseases and B-cell malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.