Oxygen supply and diffusion into tissues are necessary for survival. The oxygen partial pressure (pO2), which is a key component of the physiological state of an organ, results from the balance between oxygen delivery and its consumption. In mammals, oxygen is transported by red blood cells circulating in a well-organized vasculature. Oxygen delivery is dependent on the metabolic requirements and functional status of each organ. Consequently, in a physiological condition, organ and tissue are characterized by their own unique ‘tissue normoxia’ or ‘physioxia’ status. Tissue oxygenation is severely disturbed during pathological conditions such as cancer, diabetes, coronary heart disease, stroke, etc., which are associated with decrease in pO2, i.e. ‘hypoxia’. In this review, we present an array of methods currently used for assessing tissue oxygenation. We show that hypoxia is marked during tumour development and has strong consequences for oxygenation and its influence upon chemotherapy efficiency. Then we compare this to physiological pO2 values of human organs. Finally we evaluate consequences of physioxia on cell activity and its molecular modulations. More importantly we emphasize the discrepancy between in vivo and in vitro tissue and cells oxygen status which can have detrimental effects on experimental outcome. It appears that the values corresponding to the physioxia are ranging between 11% and 1% O2 whereas current in vitro experimentations are usually performed in 19.95% O2, an artificial context as far as oxygen balance is concerned. It is important to realize that most of the experiments performed in so-called normoxia might be dangerously misleading.
Tumor hypoxia is a characteristic of cancer cell growth and invasion, promoting angiogenesis, which facilitates metastasis. Oxygen delivery remains impaired because tumor vessels are anarchic and leaky, contributing to tumor cell dissemination. Counteracting hypoxia by normalizing tumor vessels in order to improve drug and radio therapy efficacy and avoid cancer stem-like cell selection is a highly challenging issue. We show here that inositol trispyrophosphate (ITPP) treatment stably increases oxygen tension and blood flow in melanoma and breast cancer syngeneic models. It suppresses hypoxia-inducible factors (HIFs) and proangiogenic/glycolysis genes and proteins cascade. It selectively activates the tumor suppressor phosphatase and tensin homolog (PTEN) in vitro and in vivo at the endothelial cell (EC) level thus inhibiting PI3K and reducing tumor AKT phosphorylation. These mechanisms normalize tumor vessels by EC reorganization, maturation, pericytes attraction, and lowering progenitor cells recruitment in the tumor. It strongly reduces vascular leakage, tumor growth, drug resistance, and metastasis. ITPP treatment avoids cancer stem-like cell selection, multidrug resistance (MDR) activation and efficiently enhances chemotherapeutic drugs activity. These data show that counteracting tumor hypoxia by stably restoring healthy vasculature is achieved by ITPP treatment, which opens new therapeutic options overcoming hypoxia-related limitations of antiangiogenesis-restricted therapies. By achieving long-term vessels normalization, ITPP should provide the adjuvant treatment required in order to overcome the subtle definition of therapeutic windows for in vivo treatments aimed by the current strategies against angiogenesis-dependent tumors.Electronic supplementary materialThe online version of this article (doi:10.1007/s00109-013-0992-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.