Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.
The pan-cancer analysis of whole genomes The expansion of whole-genome sequencing studies from individual ICGC and TCGA working groups presented the opportunity to undertake a meta-analysis of genomic features across tumour types. To achieve this, the PCAWG Consortium was established. A Technical Working Group implemented the informatics analyses by aggregating the raw sequencing data from different working groups that studied individual tumour types, aligning the sequences to the human genome and delivering a set of high-quality somatic mutation calls for downstream analysis (Extended Data Fig. 1). Given the recent meta-analysis
To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3, 9q31.1) and one for endometrioid EOC (5q12.3). We then meta-analysed the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified an additional three loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a novel susceptibility gene for low grade/borderline serous EOC.
Importance Cytotoxic CD8+ T lymphocytes (TILs) participate in immune control of ovarian cancer; however, little is known about prognostic patterns of CD8+ TILs by histotype and in relation to other clinical factors. Objective To define the prognostic role of CD8+ TILs in epithelial ovarian cancer. Design Prospective survival cohort. Setting Multi-center observational. Participants Over 5,500 patients, including 3,196 high-grade serous ovarian carcinomas (HGSOCs), followed prospectively for over 24,650 person-years. Exposure(s) Following immunohistochemistry, CD8+ TILs were identified within the epithelial components of tumor islets. Patients were grouped based on the estimated number of CD8+ TILs per high-powered field: negative (none), low (1–2), moderate (3–19), and high (≥20). CD8+ TILs in a subset of patients were also assessed in a quantitative, uncategorized manner, and the functional form of associations with survival was assessed using penalized B-splines. Main Outcome Measure(s) Overall survival time. Results Among the five major invasive histotypes, HGSOCs showed the most infiltration. CD8+ TILs in HGSOCs were significantly associated with longer overall survival; median survival was 2.8 years for patients with no CD8+ TILs and 3.0 years, 3.8 years, and 5.1 years for patients with low, moderate, or high levels of CD8+ TILs, respectively (p-trend=4.2 × 10−16). A survival benefit was also observed among women with endometrioid and mucinous carcinomas, but not the other histotypes. Among HGSOCs, CD8+ TILs were favorable regardless of extent of residual disease following cytoreduction, known standard treatment, and germline BRCA1 pathogenic mutation, but were not prognostic for BRCA2 mutation carriers. Evaluation of uncategorized CD8+ TIL counts showed a near linear functional form. Conclusions and Relevance This study demonstrates the histotype-specific nature of immune infiltration and provides definitive evidence for a dose-response relationship between CD8+ TILs and HGSOC survival. That the extent of infiltration is prognostic, not merely its presence or absence, suggests that understanding factors which drive infiltration will be key to unravelling outcome heterogeneity in this cancer.
Mucinous ovarian carcinoma (MOC) is a unique subtype of ovarian cancer with an uncertain etiology, including whether it genuinely arises at the ovary or is metastatic disease from other organs. In addition, the molecular drivers of invasive progression, high-grade and metastatic disease are poorly defined. We perform genetic analysis of MOC across all histological grades, including benign and borderline mucinous ovarian tumors, and compare these to tumors from other potential extra-ovarian sites of origin. Here we show that MOC is distinct from tumors from other sites and supports a progressive model of evolution from borderline precursors to high-grade invasive MOC. Key drivers of progression identified are TP53 mutation and copy number aberrations, including a notable amplicon on 9p13. High copy number aberration burden is associated with worse prognosis in MOC. Our data conclusively demonstrate that MOC arise from benign and borderline precursors at the ovary and are not extra-ovarian metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.