The acquired immunodeficiency syndrome (AIDS) is the late-stage clinical manifestation of long-term persistent infection with the human immunodeficiency virus type 1 (HIV-1). Immune responses directed against the virus and against virus-infected cells during the persistent infection fail to mediate resolution of the infection. As a result, a successful AIDS vaccine must elicit an immune state that will prevent the establishment of the persistent infection following introduction of the virus into the host. The third hypervariable (V3) domain of the HIV-1 gp120 envelope glycoprotein is a disulphide-linked closed loop of about 30 amino acids which binds and elicits anti-HIV-1 type-specific virus-neutralizing antibodies. The in vitro characteristics of anti-V3 domain antibody suggest that this antibody could by itself prevent HIV-1 infection in vivo, an idea supported by chimpanzee challenge studies in which protection against the HIV-1 persistent infection seemed to correlate with the presence of anti-V3 domain antibody. Here we directly demonstrate the protective efficacy of anti-V3 domain antibody in vivo and propose that this antibody is potentially useful as both a pre- and post-exposure prophylactic agent.
Highlights d 485 single genome sequences reveal patterns of relatedness within malaria infections d Co-transmission of related parasites is more widespread than superinfection d Serial passage of complex infections without loss of diversity is commonplace d Reconstruction of a single meiosis reveals the extent of inbreeding in mosquitoes
Natural killer (NK) cells play critical roles in innate immunity and in bridging innate and adaptive immune responses against viral infection. However, the response of NK cells to monkeypox virus (MPXV) infection is not well characterized. In this intravenous challenge study of MPXV infection in rhesus macaques (Macaca mulatta), we analyzed blood and lymph node NK cell changes in absolute cell numbers, cell proliferation, chemokine receptor expression, and cellular functions. Our results showed that the absolute number of total NK cells in the blood increased in response to MPXV infection at a magnitude of 23-fold, manifested by increases in CD56+, CD16+, CD16-CD56- double negative, and CD16+CD56+ double positive NK cell subsets. Similarly, the frequency and NK cell numbers in the lymph nodes also largely increased with the total NK cell number increasing 46.1-fold. NK cells both in the blood and lymph nodes massively proliferated in response to MPXV infection as measured by Ki67 expression. Chemokine receptor analysis revealed reduced expression of CXCR3, CCR7, and CCR6 on NK cells at early time points (days 2 and 4 after virus inoculation), followed by an increased expression of CXCR3 and CCR5 at later time points (days 7-8) of infection. In addition, MPXV infection impaired NK cell degranulation and ablated secretion of interferon-γ and tumor necrosis factor-α. Our data suggest a dynamic model by which NK cells respond to MPXV infection of rhesus macaques. Upon virus infection, NK cells proliferated robustly, resulting in massive increases in NK cell numbers. However, the migrating capacity of NK cells to tissues at early time points might be reduced, and the functions of cytotoxicity and cytokine secretion were largely compromised. Collectively, the data may explain, at least partially, the pathogenesis of MPXV infection in rhesus macaques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.