Astrocytomas, oligodendrogliomas, and oligoastrocytomas, collectively referred to as diffuse gliomas, are the most common primary brain tumors. These tumors are classified by histologic similarity to differentiated astrocytes and oligodendrocytes, but this approach has major limitations in guiding modern treatment and research. Lineage markers represent a potentially useful adjunct to morphologic classification. The murine bHLH transcription factors Olig1 and Olig2 are expressed in neural progenitors and oligodendroglia and are essential for oligodendrocyte development. High OLIG expression alone has been proposed to distinguish oligodendrogliomas from astrocytomas, so we critically evaluated OLIG2 as a marker by immunohistochemical and oligonucleotide microarray analysis. OLIG2 protein is faithfully restricted to normal oligodendroglia and their progenitors in human brain. Immunohistochemical analysis of 180 primary, metastatic, and non-neural human tumors shows OLIG2 is highly expressed in all diffuse gliomas. Immunohistochemistry and microarray analyses demonstrate higher OLIG2 in anaplastic oligodendrogliomas versus glioblastomas, which are heterogeneous with respect to OLIG2 levels. OLIG2 protein expression is present but inconsistent and generally lower in most other brain tumors and is absent in non-neuroectodermal tumors. Overall, OLIG2 is a useful marker of diffuse gliomas as a class. However, expression heterogeneity of OLIG2 in astrocytomas precludes immunohistochemical classification of individual gliomas by OLIG2 alone.
Only a subset of patients with newly diagnosed glioblastoma (GBM) exhibit a response to standard therapy. To date, a biomarker panel with predictive power to distinguish treatment sensitive from treatment refractory GBM tumors does not exist. An analysis was performed using GBM microarray data from 4 independent data sets. An examination of the genes consistently associated with patient outcome, revealed a consensus 38-gene survival set. Worse outcome was associated with increased expression of genes associated with mesenchymal differentiation and angiogenesis. Application to formalin fixed-paraffin embedded (FFPE) samples using real-time reverse-transcriptase polymerase chain reaction assays resulted in a 9-gene subset which appeared robust in these samples. This 9-gene set was then validated in an additional independent sample set. Multivariate analysis confirmed that the 9-gene set was an independent predictor of outcome after adjusting for clinical factors and methylation of the methyl-guanine methyltransferase promoter. The 9-gene profile was also positively associated with markers of glioma stem-like cells, including CD133 and nestin. In sum, a multigene predictor of outcome in glioblastoma was identified which appears applicable to routinely processed FFPE samples. The profile has potential clinical application both for optimization of therapy in GBM and for the identification of novel therapies targeting tumors refractory to standard therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.