Background-FrzA/sFRP-1, a secreted, frizzled-related protein and antagonist for the wnt/frizzled pathway, is expressed in the heart and vessels during mouse embryogenesis and adulthood. FrzA is involved in cell cycle control of vascular cells and angiogenesis. We assessed the hypothesis that FrzA could control the healing process after myocardial infarction (MI Early leukocyte infiltration had decreased in Tg mice during the first week. Apoptotic index was decreased by 50% in Tg mice at day 7. Matrix metalloproteinase-2 and -9 activity was reduced in Tg mice at day 4, and collagen deposition in the scar was increased in Tg mice. Capillary density in the scar was higher in Tg mice (290Ϯ103 vessels/mm 2 versus 104Ϯ43 in controls at day 15; PϽ0.001). Vessels were more muscularized, and mean lumen area was 3-fold higher in Tg animals. Conclusions-Overexpression
Tissue restoration is the process whereby multiple damaged cell types are replaced to restore the histoarchitecture and function to the tissue. Several theories have been proposed to explain the phenomenon of tissue restoration in amphibians and in animals belonging to higher orders. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed progenitor cells, and activation of reserve precursor cells. Studies by Young et al. and others demonstrated that connective tissue compartments throughout postnatal individuals contain reserve precursor cells. Subsequent repetitive single cell-cloning and cell-sorting studies revealed that these reserve precursor cells consisted of multiple populations of cells, including tissue-specific progenitor cells, germ-layer lineage stem cells, and pluripotent stem cells. Tissue-specific progenitor cells display various capacities for differentiation, ranging from unipotency (forming a single cell type) to multipotency (forming multiple cell types). However, all progenitor cells demonstrate a finite life span of 50 to 70 population doublings before programmed cell senescence and cell death occurs. Germ-layer lineage stem cells can form a wider range of cell types than a progenitor cell. An individual germ-layer lineage stem cell can form all cells types within its respective germ-layer lineage (i.e., ectoderm, mesoderm, or endoderm). Pluripotent stem cells can form a wider range of cell types than a single germ-layer lineage stem cell. A single pluripotent stem cell can form cells belonging to all three germ layer lineages. Both germ-layer lineage stem cells and pluripotent stem cells exhibit extended capabilities for self-renewal, far surpassing the limited life span of progenitor cells (50-70 population doublings). The authors propose that the activation of quiescent tissue-specific progenitor cells, germ-layer lineage stem cells, and/or pluripotent stem cells may be a potential explanation, along with dedifferentiation and transdifferentiation, for the process of tissue restoration. Several model systems are currently being investigated to determine the possibilities of using these adult quiescent reserve precursor cells for tissue engineering.
Undifferentiated cells have been identified in the prenatal blastocyst, inner cell mass, and gonadal ridges of rodents and primates, including humans. After isolation these cells express molecular and immunological markers for embryonic cells, capabilities for extended self‐renewal, and telomerase activity. When allowed to differentiate, embryonic stem cells express phenotypic markers for tissues of ectodermal, mesodermal, and endodermal origin. When implanted in vivo, undifferentiated noninduced embryonic stem cells formed teratomas. In this report we describe a cell clone isolated from postnatal rat skeletal muscle and derived by repetitive single‐cell clonogenic analysis. In the undifferentiated state it consists of very small cells having a high ratio of nucleus to cytoplasm. The clone expresses molecular and immunological markers for embryonic stem cells. It exhibits telomerase activity, which is consistent with its extended capability for self‐renewal. When induced to differentiate, it expressed phenotypic markers for tissues of ectodermal, mesodermal, and endodermal origin. The clone was designated as a postnatal pluripotent epiblastic‐like stem cell (PPELSC). The undifferentiated clone was transfected with a genomic marker and assayed for alterations in stem cell characteristics. No alterations were noted. The labeled clone, when implanted into heart after injury, incorporated into myocardial tissues undergoing repair. The labeled clone was subjected to directed lineage induction in vitro, resulting in the formation of islet‐like structures (ILSs) that secreted insulin in response to a glucose challenge. This study suggests that embryonic‐like stem cells are retained within postnatal mammals and have the potential for use in gene therapy and tissue engineering. Anat Rec Part A 277A:178–203, 2004. © 2004 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.