Climate change and stagnating crop yields may cause a decline of SOC stocks in agricultural soils leading to considerable CO2 emissions and reduced agricultural productivity. Regional model-based SOC projections are needed to evaluate these potential risks. In this study, we simulated the future SOC development in cropland and grassland soils of Bavaria in the 21st century. Soils from 51 study sites representing the most important soil classes of Central Europe were fractionated and derived SOC pools were used to initialize the RothC soil carbon model. For each site, long-term C inputs were determined using the C allocation method. Model runs were performed for three different C input scenarios as a realistic range of projected yield development. Our modelling approach revealed substantial SOC decreases of 11–16% under an expected mean temperature increase of 3.3 °C assuming unchanged C inputs. For the scenario of 20% reduced C inputs, agricultural SOC stocks are projected to decline by 19–24%. Remarkably, even the optimistic scenario of 20% increased C inputs led to SOC decreases of 3–8%. Projected SOC changes largely differed among investigated soil classes. Our results indicated that C inputs have to increase by 29% to maintain present SOC stocks in agricultural soils.
Abstract. Commonly, the micrometeorological parameters that underline the calculations of surface atmosphere exchange fluxes (e.g. friction velocity and sensible heat flux) and parameters used to model exchange fluxes with SVATtype parameterisations (e.g. latent heat flux and canopy temperature) are measured with a single set of instrumentation and are analysed with a single methodology. This paper evaluates uncertainties in these measurements with a single instrument, by comparing the independent results from nine different institutes during the international GRAMINAE integrated field experiment over agricultural grassland near Braunschweig, Lower Saxony, Germany. The paper discusses uncertainties in measuring friction velocity, sensible and latent heat fluxes, canopy temperature and investigates the energy balance closure at this site. Although individual 15-min flux calculations show a large variability between the instruments, when averaged over the campaign, fluxes agree within 2% for momentum and 11% for sensible heat. However, the spread in estimates of latent heat flux (λE) is Correspondence to: E. Nemitz (en@ceh.ac.uk) larger, with standard deviations of averages of 18%. The dataset averaged over the different instruments fails to close the energy budget by 20%, significantly larger than the uncertainties in the individual flux corrections. However, if the largest individual turbulent flux estimates are considered, energy closure can be achieved, indicating that the closure gap is within the spread of the measurements. The uncertainty in λE feeds results in an uncertainty in the bulk stomatal resistance, which further adds to the uncertainties in the estimation of the canopy temperature that controls the exchange. The paper demonstrated how a consensus dataset was derived, which is used by the individual investigators to calculate fluxes and drive their models.
Abstract. Commonly, the micrometeorological parameters that underline the calculations of surface atmosphere exchange fluxes (e.g. friction velocity and sensible heat flux) and parameters used to model exchange fluxes with SVAT-type parameterisations (e.g. latent heat flux and canopy temperature) are measured with a single set of instrumentation and are analysed with a single methodology. This paper evaluates uncertainties in these measurements with a single instrument, by comparing the independent results from nine different institutes during the international GRAMINAE integrated field experiment over agricultural grassland near Braunschweig, Lower Saxony, Germany. The paper discusses uncertainties in measuring friction velocity, sensible and latent heat fluxes, canopy temperature and investigates the energy balance closure at this site. Although individual 15-min flux calculations show a large variability between the instruments, when averaged over the campaign, fluxes agree within 2% for momentum and 11% for sensible heat. However, the spread in estimates of latent heat flux (λE) is larger, with standard deviations of averages of 18%. While the dataset averaged over the different instruments fails to close the energy budget by 30%, if the largest turbulent fluxes are considered, near perfect energy closure can be achieved, suggesting that most techniques underestimate λE in particular. The uncertainty in λE feeds results in an uncertainty in the bulk stomatal resistance, which further adds to the uncertainties in the estimation of the canopy temperature that controls the exchange. The paper demonstrated how a consensus dataset was derived, which is used by the individual investigators to calculate fluxes and drive their models.
Aims Increasing soil organic carbon (SOC) stocks is discussed as negative emission technology with the potential to remove relevant amounts of carbon from the atmosphere. At the same time, climate change-driven losses of SOC to the atmosphere might impede such goals. Methods In this study, we used an ensemble of different SOC models and climate projections to project SOC stocks in German croplands up to 2099 under different climate change scenarios. We then estimated the required increase in organic carbon (OC) input to preserve or increase SOC stocks. Results Projected SOC stocks of German croplands are estimated to decline under current OC input levels and management, both with and without climate change. Depending on the climate scenario, we estimated that the OC input to the soil in 2099 needs to be between 51% (+ 1.3 Mg ha− 1) and 93% (+ 2.3 Mg ha− 1) higher than today to preserve current SOC stock levels. A SOC stock increase of 34.4% (4‰ a− 1) would even require an OC input increase of between 221% (+ 5.5 Mg ha− 1) and 283% (+ 7.1 Mg ha− 1). Conclusions Our study highlights that under climate change increasing SOC stocks is considerable challenging since projected SOC losses have to be compensated first before SOC built up is possible. This would require unrealistically high OC input increases with drastic changes in agricultural management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.