Acute exposure to cocaine transiently induces several Fos family transcription factors in the nucleus accumbens, a region of the brain that is important for addiction. In contrast, chronic exposure to cocaine does not induce these proteins, but instead causes the persistent expression of highly stable isoforms of deltaFosB. deltaFosB is also induced in the nucleus accumbens by repeated exposure to other drugs of abuse, including amphetamine, morphine, nicotine and phencyclidine. The sustained accumulation of deltaFosB in the nucleus accumbens indicates that this transcription factor may mediate some of the persistent neural and behavioural plasticity that accompanies chronic drug exposure. Using transgenic mice in which deltaFosB can be induced in adults in the subset of nucleus accumbens neurons in which cocaine induces the protein, we show that deltaFosB expression increases the responsiveness of an animal to the rewarding and locomotor-activating effects of cocaine. These effects of deltaFosB appear to be mediated partly by induction of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole) glutamate receptor subunit GluR2 in the nucleus accumbens. These results support a model in which deltaFosB, by altering gene expression, enhances sensitivity to cocaine and may thereby contribute to cocaine addiction.
The cAMP cascade, including the cAMP response element-binding protein (CREB), is known to play an important role in neuronal survival and plasticity. Here the influence of this cascade on neurogenesis in adult hippocampus was determined. Activation of the cAMP cascade by administration of rolipram, an inhibitor of cAMP breakdown, increased the proliferation of newborn cells in adult mouse hippocampus. In addition, rolipram induction of cell proliferation resulted in mature granule cells that express neuronal-specific markers. Increased cell proliferation is accompanied by activation of CREB phosphorylation in dentate gyrus granule cells, suggesting a role for this transcription factor. This possibility is supported by studies demonstrating that cell proliferation is decreased in conditional transgenic mice that express a dominant negative mutant of CREB in hippocampus. The results suggest that the cAMP-CREB cascade could contribute to the actions of neurotransmitters and neurotrophic factors on adult neurogenesis.
Regulation of gene transcription via the cAMP-mediated second messenger pathway has been implicated in the actions of antidepressant drugs, but studies to date have not demonstrated such an effect in vivo. To directly study the regulation of cAMP response element (CRE)-mediated gene transcription by antidepressants, transgenic mice with a CRE-LacZ reporter gene construct were administered one of three different classes of antidepressants: a norepinephrine selective reuptake inhibitor (desipramine), a serotonin selective reuptake inhibitor (fluoxetine), or a monoamine oxidase inhibitor (tranylcypromine). Chronic, but not acute, administration of these antidepressants significantly increased CRE-mediated gene transcription, as well as the phosphorylation of CRE binding protein (CREB), in several limbic brain regions thought to mediate the action of antidepressants, including the cerebral cortex, hippocampus, amygdala, and hypothalamus. These results demonstrate that chronic antidepressant treatment induces CRE-mediated gene expression in a neuroanatomically differentiated pattern and further elucidate the molecular mechanisms underlying the actions of these widely used therapeutic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.