We describe the development of a new type of high-resolution atomic force electrochemical microscopy (AFM-SECM), labeled Tarm (for tip-attached redox mediator)/AFM-SECM, where the redox mediator, a ferrocene (Fc), is tethered to the AFM-SECM probe via nanometer long, flexible polyethylene glycol (PEG) chains. It is demonstrated that the tip-attached ferrocene-labeled PEG chains effectively shuttle electrons between the tip and substrate, thus acting as molecular sensors probing the local electrochemical reactivity of a planar substrate. Moreover the Fc-PEGylated AFM-SECM probes can be used for tapping mode imaging, allowing simultaneous recording of electrochemical feedback current and of topography, with a vertical and a lateral resolution in the nanometer range. By imaging the naturally nanostructured surface of HOPG, we demonstrate that Tarm/AFM-SECM microscopy can be used to probe the reactivity of nanometer-sized active sites on surfaces. This new type of SECM microscopy, being, by design, free of the diffusional constraints of classical SECM, is expected to, in principle, enable functional imaging of redox nanosystems such as individual redox enzyme molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.