In Western Europe and the United States approximately 1 in 12 women develop breast cancer. A small proportion of breast cancer cases, in particular those arising at a young age, are attributable to a highly penetrant, autosomal dominant predisposition to the disease. The breast cancer susceptibility gene, BRCA2, was recently localized to chromosome 13q12-q13. Here we report the identification of a gene in which we have detected six different germline mutations in breast cancer families that are likely to be due to BRCA2. Each mutation causes serious disruption to the open reading frame of the transcriptional unit. The results indicate that this is the BRCA2 gene.
Hereditary paraganglioma (PGL) is characterized by the development of benign, vascularized tumors in the head and neck. The most common tumor site is the carotid body (CB), a chemoreceptive organ that senses oxygen levels in the blood. Analysis of families carrying the PGL1 gene, described here, revealed germ line mutations in the SDHD gene on chromosome 11q23. SDHD encodes a mitochondrial respiratory chain protein-the small subunit of cytochrome b in succinate-ubiquinone oxidoreductase (cybS). In contrast to expectations based on the inheritance pattern of PGL, the SDHD gene showed no evidence of imprinting. These findings indicate that mitochondria play an important role in the pathogenesis of certain tumors and that cybS plays a role in normal CB physiology.
A small proportion of breast cancer, in particular those cases arising at a young age, is due to the inheritance of dominant susceptibility genes conferring a high risk of the disease. A genomic linkage search was performed with 15 high-risk breast cancer families that were unlinked to the BRCA1 locus on chromosome 17q21. This analysis localized a second breast cancer susceptibility locus, BRCA2, to a 6-centimorgan interval on chromosome 13q12-13. Preliminary evidence suggests that BRCA2 confers a high risk of breast cancer but, unlike BRCA1, does not confer a substantially elevated risk of ovarian cancer.
Compelling experimental evidence exists for a potent invasion suppressor role of the cell‐cell adhesion molecule E‐cadherin. In addition, a tumour suppressor effect has been suggested for E‐cadherin. In human cancers, partial or complete loss of E‐cadherin expression correlates with malignancy. To investigate the molecular basis for this altered expression we developed a comprehensive PCR/SSCP mutation screen for the human E‐cadherin gene. For 49 breast cancer patients the occurrence of tumour‐specific mutations in the E‐cadherin gene was examined. No relevant DNA changes were encountered in any of 42 infiltrative ductal or medullary breast carcinoma samples. In contrast, four out of seven infiltrative lobular breast carcinomas harboured protein truncation mutations (three nonsense and one frameshift) in the extracellular part of the E‐cadherin protein. Each of the four lobular carcinomas with E‐cadherin mutations showed tumour‐specific loss of heterozygosity of chromosomal region 16q22.1 containing the E‐cadherin locus. In compliance with this, no E‐cadherin expression was detectable by immunohistochemistry in these four tumours. These findings offer a molecular explanation for the typical scattered tumour cell growth in infiltrative lobular breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.