Lichens represent a significant source of antioxidants due to numerous metabolites that can reduce free radicals. Usnea barbata (L.) F.H. Wigg. has been recognized and used since ancient times for its therapeutic effects, some of which are based on its antioxidant properties. The present study aims to analyze the phytochemical profile and to evaluate the antioxidant and cytotoxic potential of this lichen species. Five dry extracts of U. barbata (UBDE) in different solvents (acetone, ethyl acetate, ethanol, methanol, water) were prepared by refluxing at Soxhlet to achieve these proposed objectives and to identify which solvent is the most effective for the extraction. The usnic acid content (UAC) was quantified by ultra-high performance liquid chromatography (UHPLC). The total polyphenols content (TPC) and tannins content (TC) were evaluated by spectrophotometry, and the total polysaccharides (PSC) were extracted by a gravimetric method. The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical method was used to assess the antioxidant activity (AA) and the Brine Shrimp Lethality (BSL) assay was the biotest for cytotoxic activity evaluation. The ethyl acetate extract had the highest usnic acid content, and acetone extract had the highest content of total polyphenols and tannins. The most significant antioxidant effect was reported to methanol extract, and all the extracts proved high cytotoxicity. The water extract has the lowest cytotoxicity because usnic acid is slightly soluble in this solvent, and it was not found at UHPLC analysis. All extracts recorded a moderate correlation between the content of usnic acid, polyphenols, tannins, and AA; furthermore, it has been observed that the cytotoxicity varies inversely with the antioxidant effect.
Identification and quantification of polyphenols in plant material are of great interest since they make a significant contribution to its total bioactivity. In the present study, an UPLC-Orbitrap-MS/MS approach using the variable data acquisition mode (vDIA) was developed and applied for rapid separation, identification, and quantification of the main polyphenolic compounds in Medicago sativa L. and Trifolium pratense L. sprouts in different germination stages. Based on accurate MS data and fragment ions identification strategy, a total of 29 compounds were identified by comparing their accurate masses, fragment ions, retention times, and literatures. Additionally, a number of 30 compounds were quantified by comparing to the reference standards. Data were statistically analysed. For both plant species, the sprouts of the third germination day are valuable sources of bioactive compounds and could be used in phytotherapy and nutrition. Although Trifolium pratense L. (Red Clover) is considered to be a reference for natural remedies in relieving menopause disorders, alfalfa also showed a high level of biological active compounds with estrogenic activity.
Chronic venous disease is one of the most common vascular diseases; the signs and symptoms are varied and are often neglected in the early stages. Vascular damage is based on proinflammatory, prothrombotic, prooxidant activity and increased expression of several matrix metalloproteinases (MMPs). The aim of this research is preparation and preliminary characterization of three vegetal extracts (Sophorae flos-SE, Ginkgo bilobae folium-GE and Calendulae flos-CE). The obtained dry extracts were subjected to phytochemical screening (FT-ICR-MS, UHPLC-HRMS/MS) and quantitative analysis (UHPLC-HRMS/MS, spectrophotometric methods). Antioxidant activity was evaluated using three methods: FRAP, DPPH and ABTS. More than 30 compounds were found in each extract. The amount of flavones follows the succession: SE > GE > CE; the amount of phenolcarboxylic acids follows: SE > CE > GE; and the amount of polyphenols follows: SE > GE > CE. Results for FRAP method varied as follows: SE > CE > GE; results for the DPPH method followed: SE > GE > CE; and results for ABTS followed: SE > GE > CE. Strong and very strong correlations (appreciated by Pearson coefficient) have been observed between antioxidant activity and the chemical content of extracts. Molecular docking studies revealed the potential of several identified phytochemicals to inhibit the activity of four MMP isoforms. In conclusion, these three extracts have potential in the treatment of chronic venous disease, based on their phytochemical composition.
Phenolic compounds are plants’ bioactive metabolites that have been studied for their ability to confer extensive benefits to human health. As currently there is an increased interest in natural compounds identification and characterization, new analytical methods based on advanced technologies have been developed. This paper summarizes current advances in the state of the art for polyphenols identification and quantification. Analytical techniques ranging from high-pressure liquid chromatography to hyphenated spectrometric methods are discussed. The topic of high-resolution mass spectrometry, from targeted quantification to untargeted comprehensive chemical profiling, is particularly addressed. Structure elucidation is one of the important steps for natural products research. Mass spectral data handling approaches, including acquisition mode selection, accurate mass measurements, elemental composition, mass spectral library search algorithms and structure confirmation through mass fragmentation pathways, are discussed.
Usnea lichens are known for their beneficial pharmacological effects with potential applications in oral medicine. This study aims to investigate the extract of Usnea barbata (L.) Weber ex F.H. Wigg from the Călimani Mountains in canola oil as an oral pharmaceutical formulation. In the present work, bioadhesive oral films (F-UBO) with U. barbata extract in canola oil (UBO) were formulated, characterized, and evaluated, evidencing their pharmacological potential. The UBO-loaded films were analyzed using standard methods regarding physicochemical and pharmacotechnical characteristics to verify their suitability for topical administration on the oral mucosa. F-UBO suitability confirmation allowed for the investigation of antimicrobial and anticancer potential. The antimicrobial properties against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 were evaluated by a resazurin-based 96-well plate microdilution method. The brine shrimp lethality assay (BSL assay) was the animal model cytotoxicity prescreen, followed by flow cytometry analyses on normal blood cells and oral epithelial squamous cell carcinoma CLS-354 cell line, determining cellular apoptosis, caspase-3/7 activity, nuclear condensation and lysosomal activity, oxidative stress, cell cycle, and cell proliferation. The results indicate that a UBO-loaded bioadhesive film’s weight is 63 ± 1.79 mg. It contains 315 µg UBO, has a pH = 6.97 ± 0.01, a disintegration time of 124 ± 3.67 s, and a bioadhesion time of 86 ± 4.12 min, being suitable for topical administration on the oral mucosa. F-UBO showed moderate dose-dependent inhibitory effects on the growth of both bacterial and fungal strains. Moreover, in CLS-354 tumor cells, F-UBO increased oxidative stress, diminished DNA synthesis, and induced cell cycle arrest in G0/G1. All these properties led to considering UBO-loaded bioadhesive oral films as a suitable phytotherapeutic formulation with potential application in oral infections and neoplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.