Purpose:To conduct a comprehensive analysis of radiologist-made assessments of glioblastoma (GBM) tumor size and composition by using a community-developed controlled terminology of magnetic resonance (MR) imaging visual features as they relate to genetic alterations, gene expression class, and patient survival. Materials and Methods:Because all study patients had been previously deidentified by the Cancer Genome Atlas (TCGA), a publicly available data set that contains no linkage to patient identifiers and that is HIPAA compliant, no institutional review board approval was required. Presurgical MR images of 75 patients with GBM with genetic data in the TCGA portal were rated by three neuroradiologists for size, location, and tumor morphology by using a standardized feature set. Interrater agreements were analyzed by using the Krippendorff a statistic and intraclass correlation coefficient. Associations between survival, tumor size, and morphology were determined by using multivariate Cox regression models; associations between imaging features and genomics were studied by using the Fisher exact test. Results:Interrater analysis showed significant agreement in terms of contrast material enhancement, nonenhancement, necrosis, edema, and size variables. Contrast-enhanced tumor volume and longest axis length of tumor were strongly associated with poor survival (respectively, hazard ratio: 8.84, P = .0253, and hazard ratio: 1.02, P = .00973), even after adjusting for Karnofsky performance score (P = .0208). Proneural class GBM had significantly lower levels of contrast enhancement (P = .02) than other subtypes, while mesenchymal GBM showed lower levels of nonenhanced tumor (P , .01). Conclusion:This analysis demonstrates a method for consistent image feature annotation capable of reproducibly characterizing brain tumors; this study shows that radiologists' estimations of macroscopic imaging features can be combined with genetic alterations and gene expression subtypes to provide deeper insight to the underlying biologic properties of GBM subsets.q RSNA, 2013
Purpose:To correlate patient survival with morphologic imaging features and hemodynamic parameters obtained from the nonenhancing region (NER) of glioblastoma (GBM), along with clinical and genomic markers. Materials andMethods:An institutional review board waiver was obtained for this HIPAA-compliant retrospective study. Forty-five patients with GBM underwent baseline imaging with contrast material-enhanced magnetic resonance (MR) imaging and dynamic susceptibility contrast-enhanced T2*-weighted perfusion MR imaging. Molecular and clinical predictors of survival were obtained. Single and multivariable models of overall survival (OS) and progression-free survival (PFS) were explored with Kaplan-Meier estimates, Cox regression, and random survival forests. Results:Worsening OS (log-rank test, P = .0103) and PFS (log-rank test, P = .0223) were associated with increasing relative cerebral blood volume of NER (rCBV NER ), which was higher with deep white matter involvement (t test, P = .0482) and poor NER margin definition (t test, P = .0147). NER crossing the midline was the only morphologic feature of NER associated with poor survival (log-rank test, P = .0125). Preoperative Karnofsky performance score (KPS) and resection extent (n = 30) were clinically significant OS predictors (log-rank test, P = .0176 and P = .0038, respectively). No genomic alterations were associated with survival, except patients with high rCBV NER and wild-type epidermal growth factor receptor (EGFR) mutation had significantly poor survival (log-rank test, P = .0306; area under the receiver operating characteristic curve = 0.62). Combining resection extent with rCBV NER marginally improved prognostic ability (permutation, P = .084). Random forest models of presurgical predictors indicated rCBV NER as the top predictor; also important were KPS, age at diagnosis, and NER crossing the midline. A multivariable model containing rCBV NER , age at diagnosis, and KPS can be used to group patients with more than 1 year of difference in observed median survival (0.49-1.79 years). Conclusion:Patients with high rCBV NER and NER crossing the midline and those with high rCBV NER and wild-type EGFR mutation showed poor survival. In multivariable survival models, however, rCBV NER provided unique prognostic information that went above and beyond the assessment of all NER imaging features, as well as clinical and genomic features.q RSNA, 2014
BACKGROUND AND PURPOSE:Mild cognitive impairment (MCI) is a risk factor for Alzheimer disease and can be difficult to diagnose because of the subtlety of symptoms. This study attempted to examine gray matter (GM) and white matter (WM) changes with cortical thickness analysis and diffusion tensor imaging (DTI) in patients with MCI and demographically matched comparison subjects to test these measurements as possible imaging markers for diagnosis.
As it identifies tumor infiltration and regions at high risk for recurrence, sMRI could complement conventional MRI to improve local control in GBM patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.