IMPORTANCE Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor.OBJECTIVE To investigate whether TTFields improves progression-free and overall survival of patients with glioblastoma, a fatal disease that commonly recurs at the initial tumor site or in the central nervous system. MAIN OUTCOMES AND MEASURESProgression-free survival (tested at α = .046). The secondary end point was overall survival (tested hierarchically at α = .048). Analyses were performed for the intent-to-treat population. Adverse events were compared by group. RESULTSOf the 695 randomized patients (median age, 56 years; IQR, 48-63; 473 men [68%]), 637 (92%) completed the trial. Median progression-free survival from randomization was 6.7 months in the TTFields-temozolomide group and 4.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.52-0.76; P < .001). Median overall survival was 20.9 months in the TTFields-temozolomide group vs 16.0 months in the temozolomide-alone group (HR, 0.63; 95% CI, 0.53-0.76; P < .001). Systemic adverse event frequency was 48% in the TTFields-temozolomide group and 44% in the temozolomide-alone group. Mild to moderate skin toxicity underneath the transducer arrays occurred in 52% of patients who received TTFields-temozolomide vs no patients who received temozolomide alone. CONCLUSIONS AND RELEVANCEIn the final analysis of this randomized clinical trial of patients with glioblastoma who had received standard radiochemotherapy, the addition of TTFields to maintenance temozolomide chemotherapy vs maintenance temozolomide alone, resulted in statistically significant improvement in progression-free survival and overall survival. These results are consistent with the previous interim analysis.TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00916409
clinicaltrials.gov Identifier: NCT00916409.
BACKGROUND: A chemosensitizing effect of levetiracetam (LEV) has been suggested because LEV inhibits O-6 methylguanine-DNA methyltransferase (MGMT). However, the survival benefit of LEV has not been clinically documented. The objective of this study was to assess the survival benefit of LEV compared with other antiepileptic drugs as a chemosensitizer to temozolomide for patients with glioblastoma. METHODS: In total, 103 consecutive patients with primary glioblastoma who received concomitant chemoradiotherapy and adjuvant chemotherapy with temozolomide were retrospectively reviewed, and 58 patients (56%) received LEV during temozolomide chemotherapy for at least 3 months. A Cox regression survival analysis was performed to adjust for confounding factors, including age, extent of lesion, Karnofsky performance scale score, extent of removal, and MGMT promoter methylation status. RESULTS: The median progression-free survival (PFS) and overall survival (OS) for patients who received LEV in combination with temozolomide (PFS: median, 9.4 months; 95% confidence interval [CI], 7.5-11.3 months; OS: median, 25.7 months; 95% CI, 21.7-29.7 months) were significantly longer than those for patients who did not receive LEV (PFS: median, 6.7 months; 95% CI, 5.8-7.6 months; OS: median, 16.7 months; 95% CI, 12.1-21.3 months; P 5.010 and P 5.027, respectively). In multivariate analysis, the variables that were identified as significant prognostic factors for OS were preoperative Karnofsky performance scale score (hazard ratio [HR], 0.37; P 5.016), MGMT promoter methylation (HR, 0.30; P 5.002), and receipt of LEV (HR, 0.31; P <.001. CONCLUSIONS: LEV may provide a survival benefit in patients with glioblastoma who receive temozolomide-based chemotherapy. A prospective randomized study may be indicated. Cancer 2015;121:2926-32.
The aim of this study was to determine the clinicopathological significance of programmed cell death ligand 1 (PD-L1) expression in glioblastoma (GBM). In a retrospective cohort of 115 consecutive patients with GBM, PD-L1 expression was determined using immunohistochemistry (IHC). Membranous and fibrillary PD-L1 staining of any intensity in > 5% neoplastic cells and tumour infiltrating immune cells (TIIs) was considered positive staining. In addition, isocitrate dehydrogenase-1 (IDH-1) (R132H) expression and cluster of differentiation 3 (CD3)-positive T-cell infiltration were investigated using IHC. O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation assay and fluorescence in situ hybridization (FISH) for the assessment of 1p/19q deletion were performed. Expression of PD-L1 in tumour cells and TIIs was found in 37 (32.2%) and 6 (5.2%) patients, respectively. Kaplan-Meier analysis indicated that PD-L1 expression in tumour cells was significantly associated with poor overall survival (OS) (P = 0.017), though multivariate Cox analysis did not confirm this association (hazard ratio 1.204; P = 0.615). PD-L1 expression in TIIs did not correlate with the patient prognosis (P = 0.545). In addition, MGMT methylation and IDH-1 (R132H) expression were associated with a better prognosis (P < 0.001 and P = 0.024, respectively). The expression of PD-L1 was associated with CD3-positive T-cell infiltration (P < 0.001), and IDH-1 wild type status (P = 0.008). A deeper insight into PD-L1 expression could help to ensure the success of future immunotherapy in GBM. Our study suggested that PD-L1 target therapy might be beneficial for PD-L1-expressing GBM patients with a poor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.