Objectives
The examination of retinal microvascular abnormalities through fundus photography is currently the best available non‐invasive technique for assessment of cerebral vascular status. Several studies in the last decade have reported higher incidences of adverse cerebrovascular events in Schizophrenia (SCZ) and bipolar disorder (BD). However, retinal microvasculature abnormalities in SCZ and BD have remained under‐explored, and no study has compared this aspect of SCZ and BD till date.
Methods
Retinal Images of 100 SCZ patients, BD patients, and healthy volunteers each were acquired by trained individuals using a non‐mydriatic camera with a 40‐degree field of view. The retinal images were quantified using a valid semi‐automated method. The average of left and right eye diameters of the venules and arterioles passing through the extended zone between 0.5 and 2 disc diameters from the optic disc were calculated.
Results
The groups differed significantly with respect to average diameters of both retinal venules (P < 0.001) and retinal arterioles (P < 0.001), after controlling for age and sex. Both SCZ and BD patients had significantly narrower arterioles and wider venules compared to HV. There were also significant differences between SCZ and BD patients; patients with BD had narrower arterioles and wider venules.
Conclusion
Considering the affordability and easy accessibility of the investigative procedure, retinal microvascular examination could serve as a potential screening tool to identify individuals at risk for adverse cerebrovascular events. The findings of the current study also provide a strong rationale for further systematic examination of retinal vascular abnormalities in SCZ and BD.
Human angiotensin‐converting enzyme 2 (ACE2) is the primary host cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) binding and cell entry. Administration of high concentrations of soluble ACE2 can be utilized as a decoy to block the interaction of the virus with cellular ACE2 receptors and potentially be used as a strategy for treatment or prevention of coronavirus disease 2019. Human ACE2 is heavily glycosylated and its glycans impact on binding to the SARS‐CoV‐2 spike protein and virus infectivity. Here, we describe the production of a recombinant soluble ACE2‐fragment crystallizable (Fc) variant in glycoengineered Nicotiana benthamiana. Our data reveal that the produced dimeric ACE2‐Fc variant is glycosylated with mainly complex human‐type N‐glycans and functional with regard to enzyme activity, affinity to the SARS‐CoV‐2 receptor‐binding domain, and wild‐type virus neutralization.
DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.