BackgroundMalaria remains a public health concern in Hubei Province despite the significant decrease in malaria incidence over the past decades. Furthermore, history reveals that malaria transmission is unstable and prone to local outbreaks in Hubei Province. Thus, understanding spatial, temporal, and spatiotemporal distribution of malaria is needed for the effective control and elimination of this disease in Hubei Province.MethodsAnnual malaria incidence at the county level was calculated using the malaria cases reported from 2004 to 2011 in Hubei Province. Geographical information system (GIS) and spatial scan statistic method were used to identify spatial clusters of malaria cases at the county level. Pure retrospective temporal analysis scanning was performed to detect the temporal clusters of malaria cases with high rates using the discrete Poisson model. The space-time cluster was detected with high rates through the retrospective space-time analysis scanning using the discrete Poisson model.ResultsThe overall malaria incidence decreased to a low level from 2004 to 2011. The purely spatial cluster of malaria cases from 2004 to 2011 showed that the disease was not randomly distributed in the study area. A total of 11 high-risk counties were determined through Local Moran’s I analysis from 2004 to 2011. The method of spatial scan statistics identified different 11 significant spatial clusters between 2004 and 2011. The space-time clustering analysis determined that the most likely cluster included 13 counties, and the time frame was from April 2004 to November 2007.ConclusionsThe GIS application and scan statistical technique can provide means to detect spatial, temporal, and spatiotemporal distribution of malaria, as well as to identify malaria high-risk areas. This study could be helpful in prioritizing resource assignment in high-risk areas for future malaria control and elimination.
This study aims to identify the landscape ecological determinants related to Oncomelania hupensis distribution, map the potential high risk of O. hupensis habitats at the microscale, and assess the effects of two environmental control strategies. Sampling was performed on 242 snail sites and 726 non-snail sites throughout Qianjiang City, Hubei Province, China. An integrated approach of landscape pattern analysis coupled with multiple logistic regression modeling was applied to investigate the effects of environmental factors on snail habitats. The risk probability of snail habitats positively correlated with patch fractal dimension (FD), paddy farm land proportion, and wetness index but inversely correlated with categorized normalized difference vegetation index (NDVI) and elevation. These findings indicate that FD can identify irregular features (e.g., irrigation ditches) in plain regions and that a moderate NDVI increases the microscale risk probability. Basing on the observed determinants, we predicted a map showing high-risk areas of snail habitats and simulated the effects of conduit hardening and paddy farming land rotation to dry farming land. The two approaches were confirmed effective for snail control. These findings provide an empirical basis for health professionals in local schistosomiasis control stations to identify priority areas and promising environmental control strategies for snail control and prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.