Glioblastoma is a severe type of primary brain tumor, and its highly invasive character is considered to be a major therapeutic obstacle. Several recent studies have reported that ionizing radiation (IR) enhances the invasion of tumor cells, but the mechanisms for this effect are not well understood. In this study, we investigated the possible signaling mechanisms involved in IR-induced invasion of glioma cells. IR increased the matrix metalloproteinase (MMP)-2 promoter activity, mRNA transcription, and protein secretion along with the invasiveness of glioma cells lacking functional PTEN (U87, U251, U373, and C6) but not those harboring wild-type (WT)-PTEN (LN18 and LN428). IR activated phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin, and blockade of these kinases by specific inhibitors (LY294002, Akt inhibitor IV, and rapamycin, respectively) and transfection of dominant-negative (DN) mutants (DN-p85 and DN-Akt) or WT-PTEN suppressed the IR-induced MMP-2 secretion in U251 and U373 cells. In addition, inhibitors of epidermal growth factor receptor (EGFR; AG490 and AG1478), Src (PP2), and p38 (SB203580), EGFR neutralizing antibody, and transfection of DN-Src and DN-p38 significantly blocked IR-induced Akt phosphorylation and MMP-2 secretion. IR-induced activation of EGFR was suppressed by PP2, whereas LY294002 and SB203580 did not affect the activations of p38 and PI3K, respectively. Finally, these kinase inhibitors significantly reduced the IR-induced invasiveness of these cells on Matrigel. Taken together, our findings suggest that IR induces Srcdependent EGFR activation, which triggers the p38/Akt and PI3K/Akt signaling pathways, leading to increased MMP-2 expression and heightened invasiveness of PTEN mutant glioma cells. (Cancer Res 2006; 66(17): 8511-9)
Emodin (1,3,8‐trihydroxy‐6‐methylanthraquinone), an active component in the root and rhizome of Rheum palmatum, is a tyrosine kinase inhibitor with a number of biological activities, including antitumor effects. Here, we examine the effects of emodin on vascular endothelial growth factor (VEGF)‐A‐induced angiogenesis, both in vitro and in vivo. In vitro, emodin dose‐dependently inhibits proliferation, migration into the denuded area, invasion through a layer of Matrigel and tube formation of human umbilical vein endothelial cells (HUVECs) stimulated with VEGF‐A. Emodin also inhibits basic fibroblast growth factor‐induced proliferation and migration of HUVECs and VEGF‐A‐induced tube formation of human dermal microvascular endothelial cells. Specifically, emodin induces the cell cycle arrest of HUVECs in the G0/G1 phase by suppressing cyclin D1 and E expression and retinoblastoma protein phosphorylation, and suppresses Matrigel invasion by inhibiting the basal secretion of matrix metalloproteinase‐2 and VEGF‐A‐stimulated urokinase plasminogen activator receptor expression. Additionally, emodin effectively inhibits phosphorylation of VEGF‐A receptor‐2 (KDR/Flk‐1) and downstream effector molecules, including focal adhesion kinase, extracellular signal‐regulated kinase 1/2, p38 mitogen‐activated protein kinase, Akt and endothelial nitric oxide synthase. In vivo, emodin strongly suppresses neovessel formation in the chorioallantoic membrane of chick and VEGF‐A‐induced angiogenesis of the Matrigel plug in mice. Our data collectively demonstrate that emodin effectively inhibits VEGF‐A‐induced angiogenesis in vitro and in vivo. Moreover, inhibition of phosphorylation of KDR/Flk‐1 and downstream effector molecules is a possible underlying mechanism of the anti‐angiogenic activity of emodin. Based on these data, we propose that an interaction of emodin with KDR/Flk‐1 may be involved in the inhibitory function of emodin toward VEGF‐A‐induced angiogenesis in vitro and responsible for its potent anti‐angiogenic in vivo. © 2006 Wiley‐Liss, Inc.
The net balance of matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinases (TIMP) system has been known to be a key factor in tumor cell invasion. In the present study, we investigated the molecular mechanisms of anti-invasive and antimigrative activity of transforming growth factor (TGF)-B1 on HT1080 human fibrosarcoma cells. In in vitro Matrigel invasion and Transwell migration assays, TGF-B1 dose-dependently inhibited the invasion and migration of HT1080 cells, respectively. Gelatin zymography, Western blot, and real-time PCR analysis showed that TGF-B1 enhanced the expression and secretion of MMP-2, TIMP-1, and, to a lesser degree, MMP-9 but not membrane type 1-MMP and TIMP-2. The addition of recombinant TIMP-1 protein reduced the Matrigel invasion and Transwell migration of HT1080 cells, similar to TGF-B1. Because augmentation of TIMP-1 might be the major factor for the anti-invasive and antimigrative activity of TGF-B1, we investigated possible molecular mechanisms responsible for the expression of TIMP-1 induced by TGF-B1. Treatment of HT1080 cells with TGF-B1 rapidly phosphorylated three mitogen-activated protein kinases [MAPK; extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and c-Jun NH 2 -terminal kinase] and Akt. Among these kinases, the inhibition of only ERK1/2 pathway by PD98059, a specific inhibitor of MAPK/ERK kinase(MEK)-1, and transfection of dominant-negative MEK 1 effectively blocked the TIMP-1 induction by TGF-B1. Mithramycin, a specific inhibitor of Sp1 transcription factor, but not curcumin, an inhibitor of activator protein-1, and transfection of Sp1 small interfering RNA significantly inhibited the TGF-B1-induced expression of TIMP-1. In addition, electrophoretic mobility shift assay showed that TGF-B1 up-regulated Sp1 DNA-binding activity, and PD98059 and mithramycin effectively inhibited these events. Finally, pretreatment of HT1080 cells with PD98059 and mithramycin, but not curcumin, restored the invasive activity of these cells. Taken together, these data suggest that TGF-B1 modulates the net balance of the MMPs/TIMPs the systems in HT1080 cells for antiinvasion and antimigration by augmenting TIMP-1 through ERK1/2 pathway and Sp1 transcription factor.
Nerve growth factor (NGF) is a well characterized neurotrophic agonist in the nervous system that triggers angiogenesis. In this study, we investigated the signaling mechanisms involved in NGF-induced angiogenesis. NGF stimulated endothelial cell invasion and cord formation on Matrigel in vitro but had marginal effect on proliferation and migration of these cells. NGF stimulated matrix metalloproteinase (MMP)-2 mRNA expression and protein secretion in human umbilical vein endothelial cells. Using synthetic and endogenous inhibitors of MMP-2 and MMP-2 small interfering RNA suppressed NGF-induced invasion and cord formation. We demonstrated that NGF-induced MMP-2 secretion, invasion, and cord formation are regulated via activation of the NGF receptor, TrkA, phosphatidylinositol 3-kinase (PI3K), and Akt using various pharmacological inhibitors. Specifically, NGF enhanced TrkA phosphorylation, PI3K activity, and Akt phosphorylation. Introduction of NGF-neutralizing antibodies, dominant-negative Akt, or wild-type PTEN effectively inhibited NGF-induced MMP-2 secretion and cord formation. Deletion and site-directed mutagenesis analysis of the MMP-2 promoter demonstrated that the AP-2-binding site is critical for NGF-induced MMP-2 promoter activity. NGF increased the DNA binding activity of AP-2, which was suppressed by inhibitors of TrkA and PI3K. Furthermore, transfection of AP-2 small interfering RNA effectively blocked NGFinduced MMP-2 secretion and cord formation. Finally, NGF promoted neovessel formation in Matrigel plugs in vivo, which was significantly inhibited by K252a and LY294002, but it failed to promote angiogenesis using MMP-2 knock-out mice. Our data collectively suggest that NGF stimulates endothelial cell invasion and cord formation by augmenting MMP-2 via the PI3K/Akt signaling pathway and AP-2 transcription factor, which may be responsible for triggering angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.