We report the first results of DarkSide-50, a direct search for dark matter operating in the underground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a (46.4±0.7) kg active mass, operated inside a 30 t organic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter search for a View the MathML source exposure with an atmospheric argon fill. This is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.1×10−44 cm2 for a WIMP mass of 100 Gev/c2
As part of the DarkSide program of direct dark matter searches using two-phase argon TPCs, a prototype detector with an active volume containing 10 kg of liquid argon, DarkSide-10, was built and operated underground in the Gran Sasso National Laboratory in Italy. A critically important parameter for such devices is the scintillation light yield, as photon statistics limits the rejection of electron-recoil backgrounds by pulse shape discrimination. We have measured the light yield of DarkSide-10 using the readily-identifiable full-absorption peaks from gamma ray sources combined with single-photoelectron calibrations using low-occupancy laser pulses. For gamma lines of energies in the range 122-1275 keV, we get light yields averaging 8.887 +/- 0.003(stat)+/- 0.444(sys) p.e./keV(ee). With additional purification, the light yield measured at 511 key increased to 9.142 +/- 0.006(stat) p.e./keV(ee). Published by Elsevier B.V
Although the existence of dark matter is supported by many evidences, based on astrophysical measurements, its nature is still completely unknown. One major candidate is represented by weakly interacting massive particles (WIMPs), which could in principle be detected through their collisions with ordinary nuclei in a sensitive target, producing observable low-energy (<100 keV) nuclear recoils. The DarkSide program aims at the WIPMs detection using a liquid argon time projection chamber (LAr-TPC). In this paper we quickly review the DarkSide program focusing in particular on the next generation experiment DarkSide-G2, a 3.6-ton LAr-TPC. The different detector components are described as well as the improvements needed to scale the detector from DarkSide-50 (50 kg LAr-TPC) up to DarkSide-G2. Finally, the preliminary results on background suppression and expected sensitivity are presented.
We study the advantages of a second identical detector at a medium baseline reactor neutrino experiment. A major obstruction to the determination of the neutrino mass hierarchy is the detector's unknown nonlinear energy response, which even under optimistic assumptions reduces the confidence in a hierarchy determination by about 1σ at a single detector experiment. Various energy response models are considered at one and two detector experiments with the same total target mass. A second detector at a sufficiently different baseline eliminates this 1σ reduction. Considering the unknown energy response, we find the confidence in a hierarchy determination at various candidate detector locations for JUNO and RENO 50. The best site for JUNO's near detector is under ZiLuoShan, 17 km and 66 km from the Yangjiang and Taishan reactor complexes respectively. We briefly describe other advantages, including a more precise determination of θ 12 and the possibility of a DAEδALUS inspired program to measure the CP-violating phase δ using a single pion source about 10 km from one detector and 20 km from the other. Two identical detectors provide a better energy resolution than a single detector, further increasing the confidence in a hierarchy determination.
In recent decades, inorganic crystals have been widely used in dark matter direct search experiments. To contribute to the understanding of the capabilities of CsI(Na) and CaF 2 (Eu) crystals, a mono-energetic neutron beam is utilized to study the properties of nuclear recoils, which are expected to be similar to signals of dark matter direct detection. The quenching factor of nuclear recoils in CsI(Na) and CaF 2 (Eu), as well as an improved discrimination factor between nuclear recoils and γ backgrounds in CsI(Na), are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.