Identification of protein phosphorylation sites with their cognate protein kinases (PKs) is a key step to delineate molecular dynamics and plasticity underlying a variety of cellular processes. Although nearly 10 kinase-specific prediction programs have been developed, numerous PKs have been casually classified into subgroups without a standard rule. For large scale predictions, the false positive rate has also never been addressed. In this work, we adopted a well established rule to classify PKs into a hierarchical structure with four levels, including group, family, subfamily, and single PK. In addition, we developed a simple approach to estimate the theoretically maximal false positive rates. The on-line service and local packages of the GPS (Group-based Prediction System) 2.0 were implemented in Java with the modified version of the Group-based Phosphorylation Scoring algorithm. As the first stand alone software for predicting phosphorylation, GPS 2.0 can predict kinase-specific phosphorylation sites for 408 human PKs in hierarchy. A large scale prediction of more than 13,000 mammalian phosphorylation sites by GPS 2.0 was exhibited with great performance and remarkable accuracy. Using Aurora-B as an example, we also conducted a proteome-wide search and provided systematic prediction of Aurora-B-specific substrates including protein-protein interaction information. Thus, the GPS 2.0 is a useful tool for predicting protein phosphorylation sites and their cognate kinases and is freely available on line. Molecular & Cellular Proteomics 7:1598 -1608, 2008.Post-translational modification of proteins provides reversible means to regulate the function of a protein in space and time. Recently computational studies of post-translational modifications (PTMs) 1 of proteins have attracted much attention. Various PTMs regulate the functions and dynamics of proteins through specific modifications and are implicated in almost all cellular processes. In contrast to the labor-intensive and expensive experimental methods, in silico prediction of PTM-specific substrates with their sites has emerged as a popular alternative approach. To date, more than 32 computational prediction tools have been developed (1). In the field of computational PTMs, protein phosphorylation is the most studied example. To predict general phosphorylation sites, several tools have been developed, such as DISPHOS (2), NetPhos (3), NetPhosYeast (4), and GANNPhos (5). As the need for performing large scale predictions and constructing reliable phosphorylation networks evolves, robust prediction of kinase-specific phosphorylation sites has become necessary and challenging. For example, Neuberger et al. ) developed NetworKIN and constructed a human phosphorylation network, which has gained diversified interest not only for human phosphorylation network prediction but also for general implication in cell biology. To predict kinase-specific phosphorylation sites, several on-line Web services have been implemented using various algorithms, including our previ...
Protein palmitoylation is an essential post-translational lipid modification of proteins, and reversibly orchestrates a variety of cellular processes. Identification of palmitoylated proteins with their sites is the foundation for understanding molecular mechanisms and regulatory roles of palmitoylation. Contrasting to the labor-intensive and time-consuming experimental approaches, in silico prediction of palmitoylation sites has attracted much attention as a popular strategy. In this work, we updated our previous CSS-Palm into version 2.0. An updated clustering and scoring strategy (CSS) algorithm was employed with great improvement. The leave-one-out validation and 4-, 6-, 8- and 10-fold cross-validations were adopted to evaluate the prediction performance of CSS-Palm 2.0. Also, an additional new data set not included in training was used to test the robustness of CSS-Palm 2.0. By comparison, the performance of CSS-Palm was much better than previous tools. As an application, we performed a small-scale annotation of palmitoylated proteins in budding yeast. The online service and local packages of CSS-Palm 2.0 were freely available at: http://bioinformatics.lcd-ustc.org/css_palm.
A good picture is worth a thousand words. Schematic diagram of protein domain structures with functional motifs/sites in a concise and illustrative drawing is greatly helpful for a broad readership to grasp the old and novel functions of proteins rapidly. To estimate how many papers contain protein domain graphs, we went through all original research papers (excluding reviews and other articles) in five leading journals in this field, namely
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.