ObjectiveThe aim of this study was to develop a self-diagnostic scale that could distinguish smartphone addicts based on the Korean self-diagnostic program for Internet addiction (K-scale) and the smartphone's own features. In addition, the reliability and validity of the smartphone addiction scale (SAS) was demonstrated.MethodsA total of 197 participants were selected from Nov. 2011 to Jan. 2012 to accomplish a set of questionnaires, including SAS, K-scale, modified Kimberly Young Internet addiction test (Y-scale), visual analogue scale (VAS), and substance dependence and abuse diagnosis of DSM-IV. There were 64 males and 133 females, with ages ranging from 18 to 53 years (M = 26.06; SD = 5.96). Factor analysis, internal-consistency test, t-test, ANOVA, and correlation analysis were conducted to verify the reliability and validity of SAS.ResultsBased on the factor analysis results, the subscale “disturbance of reality testing” was removed, and six factors were left. The internal consistency and concurrent validity of SAS were verified (Cronbach's alpha = 0.967). SAS and its subscales were significantly correlated with K-scale and Y-scale. The VAS of each factor also showed a significant correlation with each subscale. In addition, differences were found in the job (p<0.05), education (p<0.05), and self-reported smartphone addiction scores (p<0.001) in SAS.ConclusionsThis study developed the first scale of the smartphone addiction aspect of the diagnostic manual. This scale was proven to be relatively reliable and valid.
Previous studies have shown an association between late-onset depression (LOD) and cognitive impairment in older adults. However, the neural correlates of this relationship are not yet clear. The aim of this study was to investigate the differences in both cortical thickness and subcortical volumes between drug-naive LOD patients and healthy controls and explore the relationship between LOD and cognitive impairments. A total of 48 elderly, drug-naive patients with LOD and 47 group-matched healthy control subjects underwent 3T MRI scanning, and the cortical thickness was compared between the groups in multiple locations, across the continuous cortical surface. The subcortical volumes were also compared on a structure-by-structure basis. Subjects with LOD exhibited significantly decreased cortical thickness in the rostral anterior cingulate cortex, the medial orbitofrontal cortex, dorsolateral prefrontal cortex, the superior and middle temporal cortex, and the posterior cingulate cortex when compared with healthy subjects (all p<0.05, false discovery rate corrected). Reduced volumes of the right hippocampus was also observed in LOD patients when compared with healthy controls (p<0.001). There were significant correlations between memory functions and cortical thickness of medial temporal, isthmus cingulate, and precuneus (p<0.001). This study was the first study to explore the relationships between the cortical thickness/subcortical volumes and cognitive impairments of drug-naive patients with LOD. These structural changes might explain the neurobiological mechanism of LOD as a risk factor of dementia.
Individual differences in brain functional organization track a range of traits, symptoms and behaviours1–12. So far, work modelling linear brain–phenotype relationships has assumed that a single such relationship generalizes across all individuals, but models do not work equally well in all participants13,14. A better understanding of in whom models fail and why is crucial to revealing robust, useful and unbiased brain–phenotype relationships. To this end, here we related brain activity to phenotype using predictive models—trained and tested on independent data to ensure generalizability15—and examined model failure. We applied this data-driven approach to a range of neurocognitive measures in a new, clinically and demographically heterogeneous dataset, with the results replicated in two independent, publicly available datasets16,17. Across all three datasets, we find that models reflect not unitary cognitive constructs, but rather neurocognitive scores intertwined with sociodemographic and clinical covariates; that is, models reflect stereotypical profiles, and fail when applied to individuals who defy them. Model failure is reliable, phenotype specific and generalizable across datasets. Together, these results highlight the pitfalls of a one-size-fits-all modelling approach and the effect of biased phenotypic measures18–20 on the interpretation and utility of resulting brain–phenotype models. We present a framework to address these issues so that such models may reveal the neural circuits that underlie specific phenotypes and ultimately identify individualized neural targets for clinical intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.