The ABCA1 gene, a member of the ATP-binding cassette A (ABCA1) transporter superfamily, encodes a membrane protein that facilitates the cellular efflux of cholesterol and phospholipids. Mutations in ABCA1 lead to familial high density lipoprotein deficiency and Tangier disease. We report the complete human ABCA1 gene sequence, including 1,453 bp of the promoter, 146,581 bp of introns and exons, and 1 kb of the 3′ flanking region. The ABCA1 gene spans 149 kb and comprises 50 exons. Sixty-two repetitive Alu sequences were identified in introns 1–49. The transcription start site is 315 bp upstream of a newly identified initiation methionine codon and encodes an ORF of 6,783 bp. Thus, the ABCA1 protein is comprised of 2,261 aa. Analysis of the 1,453 bp 5′ upstream of the transcriptional start site reveals multiple binding sites for transcription factors with roles in lipid metabolism. Comparative analysis of the mouse and human ABCA1 promoter sequences identified specific regulatory elements, which are evolutionarily conserved. The human ABCA1 promoter fragment −200 to −80 bp that contains binding motifs for SP1, SP3, E-box, and AP1 modulates cellular cholesterol and cAMP regulation of ABCA1 gene expression. These combined findings provide insights into ABCA1-mediated regulation of cellular cholesterol metabolism and will facilitate the identification of new pharmacologic agents for the treatment of atherosclerosis in humans.
Lecithin:cholesterol acyltransferase (LCAT) is a key plasma enzyme in cholesterol and high density lipoprotein (HDL) metabolism. Transgenic rabbits overexpressing human LCAT had 15-fold greater plasma LCAT activity than nontransgenic control rabbits. This degree of overexpression was associated with a 6.7-fold increase in the plasma HDL cholesterol concentration in LCAT transgenic rabbits. On a 0.3% cholesterol diet, the HDL cholesterol concentrations increased from 24 ± 1 to 39 + 3 mg/dl in nontransgenic control rabbits (n = 10; P < 0.05) and increased from 161 + 5 to 200 ± 21 mg/dl (P < 0.001) in the LCAT transgenic rabbits (n = 9). Although the baseline non-HDL concentrations of control (4 ± 3 mg/dl) and transgenic rabbits (18 ± 4 mg/dl) were similar, the cholesterol-rich diet raised the non-HDL cholesterol concentrations, reflecting the atherogenic very low density, intermediate density, and low density lipoprotein particles observed by gel filtration chromatography. The non-HDL cholesterol rose to 509 + 57 mg/dl in controls compared with only 196 ± 14 mg/dl in the LCAT transgenic rabbits (P < 0.005). The differences in the plasma lipoprotein response to a cholesterol-rich diet observed in the transgenic rabbits paralleled the susceptibility to developing aortic atherosclerosis. Compared with nontransgenic controls, LCAT transgenic rabbits were protected from diet-induced atherosclerosis with significant reductions determined by both quantitative planimetry (-86%; P < 0.003) and quantitative immunohistochemistry (-93%; P < 0.009). Our results establish the importance of LCAT in the metabolism of both HDL and apolipoprotein B-containing lipoprotein particles with cholesterol feeding and the response to diet-induced atherosclerosis. In addition, these findings identify LCAT as a new target for therapy to prevent atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.