A novel series of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes was identified as potent apoptosis inducers through a cell-based high throughput screening assay. Six compounds from this series, MX-58151, MX-58276, MX-76747, MX-116214, MX-116407, and MX-126303, were further profiled and shown to have potent in vitro cytotoxic activity toward proliferating cells only and to interact with tubulin at the colchicine-binding site, thereby inhibiting tubulin polymerization and leading to cell cycle arrest and apoptosis. Furthermore, these compounds were shown to disrupt newly formed capillary tubes in vitro at low nanomolar concentrations. These data suggested that the compounds might have vascular targeting activity. In this study, we have evaluated the ability of these compounds to disrupt tumor vasculature and to induce tumor necrosis. We investigated the pharmacokinetic and toxicity profiles of all six compounds and examined their ability to induce tumor necrosis. We next examined the antitumor efficacy of a subset of compounds in three different human solid tumor xenografts. In the human lung tumor xenograft (Calu-6), MX-116407 was highly active, producing tumor regressions in all 10 animals. Moreover, MX-116407 significantly enhanced the antitumor activity of cisplatin, resulting in 40% tumor-free animals at time of sacrifice. Our results identify MX-116407 as the lead candidate and strongly support its continued development as a novel anticancer agent for human use.
Purpose: Troxacitabine is the first unnatural L-nucleoside analog to show potent preclinical antitumor activity and is currently under clinical investigation. Significant differences in troxacitabine toxicity between mice, rats, monkeys, and humans were observed during preclinical and clinical evaluations. To better understand the different toxicity and efficacy results observed between the human xenograft mouse tumor models used for preclinical assessment and the clinical study results, the pharmacodynamics and pharmacokinetics of troxacitabine were reassessed in murine and human models. Conclusions: These studies support the hypothesis that troxacitabine infusions might be the administration regimen with the greatest likelihood of fully exploiting clinically the potent preclinical antitumor activity of troxacitabine.
1-Aminobenzotriazole (ABT) is regularly used in vivo as a nonspecific and irreversible cytochrome P450 inhibitor to elucidate the role of metabolism on the pharmacokinetic profile of xenobiotics. However, few reports have considered the recent findings that ABT can alter drug absorption or have investigated the possible differential inhibition of ABT on intestinal and hepatic metabolism. To address these uncertainties, pharmacokinetic studies under well controlled and defined ABT pretreatment conditions (50 mg/kg, 1 hour ABT i.v. and 16 hours ABT p.o.) were conducted prior to the oral administration of metoprolol, a permeable P450 probe that undergoes extensive intestinal and hepatic metabolism. The pharmacokinetic profile of metoprolol was affected differently by the two ABT pretreatments. An increase in area under the curve of 16-fold with ABT p.o. and 6.5-fold with ABT i.v. was observed compared with control. Based on in vitro studies, this difference could not be attributed to a differential inhibition of intestinal and hepatic metabolism. In the ABT i.v. pretreatment group, the increase in area under the curve was also associated with a prolonged time at maximal concentration (24-fold versus control), suggesting a delay in absorption. This was further confirmed by the administration of a charcoal meal, which resulted in a 7-fold increase in stomach weights in the 1-hour ABT pretreated groups compared with the untreated or 16-hour ABT pretreated rats. Based on these results, we recommend pretreating rats with ABT p.o. 16 hours before the administration of a test compound to preserve the inhibitory effect on intestinal and hepatic metabolism and avoid the confounding effect on drug absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.