To explore the role of plant mitochondria in the regulation of cellular redox homeostasis and stress resistance, we exploited a Nicotiana sylvestris mitochondrial mutant. The cytoplasmic male-sterile mutant (CMSII) is impaired in complex I function and displays enhanced nonphosphorylating rotenone-insensitive [NAD(P)H dehydrogenases] and cyanide-insensitive (alternative oxidase) respiration. Loss of complex I function is not associated with increased oxidative stress, as shown by decreased leaf H 2 O 2 and the maintenance of glutathione and ascorbate content and redox state. However, the expression and activity of several antioxidant enzymes are modified in CMSII. In particular, diurnal patterns of alternative oxidase expression are lost, the relative importance of the different catalase isoforms is modified, and the transcripts, protein, and activity of cytosolic ascorbate peroxidase are enhanced markedly. Thus, loss of complex I function reveals effective antioxidant crosstalk and acclimation between the mitochondria and other organelles to maintain whole cell redox balance. This reorchestration of the cellular antioxidative system is associated with higher tolerance to ozone and Tobacco mosaic virus .
Alternative oxidase (AOX) functions in stress resistance by preventing accumulation of reactive oxygen species (ROS), but little is known about in vivo partitioning of electron flow between AOX and the cytochrome pathway. We investigated the relationships between AOX expression and in vivo activity in Nicotiana sylvestris and the complex I-deficient CMSII mutant in response to a cell death elicitor. While a specific AOX1 isoform in the active reduced state was constitutively overexpressed in CMSII, partitioning through the alternative pathway was similar to the wild type. Lack of correlation between AOX content and activity indicates severe metabolic constraints in nonstressed mutant leaves. The bacterial elicitor harpin N Ea induced similar timing and extent of cell death and a twofold respiratory burst in both genotypes with little change in AOX amounts. However, partitioning to AOX was increased twofold in the wild type but remained unchanged in CMSII. Oxidative phosphorylation modeling indicated a twofold ATP increase in both genotypes. By contrast, mitochondrial superoxide dismutase activity and reduced forms of ascorbate and glutathione were higher in CMSII than in the wild type. These results demonstrate genetically programmed flexibility of plant respiratory routes and antioxidants in response to elicitors and suggest that sustained ATP production, rather than AOX activity by itself or mitochondrial ROS, might be important for in planta cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.