[1] We investigate the structure of mirror modes in the solar wind at 0.72 AU using Venus Express magnetic field measurements. The mirror mode structure is identified as the presence of magnetic depression or magnetic ''holes'' in the solar wind with little or no directional change across them. We determine the characteristic size and shape of these structures by examining their durations as a function of the orientation of the magnetic field to the solar wind flow. The mirror mode structure is best fitted with an ellipsoid of revolution, and the resultant shape of the mirror mode structure is a prolate spheroid, or in other words, a rotational ellipsoid. We introduce two parameters, namely the width across the field and the eccentricity to give a full description of the size and shape of the structures. We find that the mirror mode structures in the solar wind are twodimensional and are more elongated along the magnetic field direction. Citation: Zhang, T. L., et al. (2008), Characteristic size and shape of the mirror mode structures in the solar wind at 0.72 AU, Geophys. Res. Lett., 35, L10106,
Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.