A facile synthetic strategy for nitrogen-deficient graphitic carbon nitride (g-C N ) is established, involving a simple alkali-assisted thermal polymerization of urea, melamine, or thiourea. In situ introduced nitrogen vacancies significantly redshift the absorption edge of g-C N , with the defect concentration depending on the alkali to nitrogen precursor ratio. The g-C N products show superior visible-light photocatalytic performance compared to pristine g-C N .
Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets are successfully prepared. Under UV-vis irradiation, these nanosheets are superior efficient catalysts for the photoreduction of CO2 to CO with water. The formed oxygen vacancies lead to the formation of coordinatively unsaturated Zn(+) centers within the nanosheets, responsible for the very high photocatalytic activities.
Nitrogen-doped porous carbon nanosheets (N-CNS) are synthesized by hydrothermal carbon coating of g-C3 N4 nanosheets followed by high-temperature treatment in N2 . g-C3 N4 serves as a template, nitrogen source, and porogen in the synthesis. This approach yields N-CNS with a high nitrogen content and comparable oxygen reduction reaction catalytic activities to commercial Pt/C catalysts in alkaline media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.