Permanent magnets (PMs) produce magnetic fields and maintain the field even in the presence of an opposing magnetic field. Electrical machines using permanent magnets are more efficient than those without. Currently, all known strong magnets contain rare earth (RE) elements, and they are core components of a wide range of applications including electric vehicles and wind turbines. RE elements such as Nd and Dy have become critical materials due to the growing demand and constrained supply. Improving the manufacturing process is effective in mitigating the RE criticality issue by reducing waste and improving parts consistency. In this article, the state of the industry for PM is reviewed in detail considering both the technical and economic drivers. The importance of RE elements is discussed along with their economic importance to green energy. The conventional sintering and casting manufacturing processes for commercial magnets, including Nd-Fe-B, Sm-Co, Alnico, and ferrite, are described in detail.
Permanent magnets produce magnetic fields and maintain the field even in the presence of an opposing magnetic field. They are widely used in electric machines, electronics, and medical devices. Part I reviews the conventional manufacturing processes for commercial magnets, including Nd-Fe-B, Sm-Co, alnico, and ferrite in cast and sintered forms. In Part II, bonding, emerging advanced manufacturing processes, as well as magnet recycling methods are briefly reviewed for their current status, challenges, and future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.