As an important load-bearing component, steel wire ropes (WRs) are widely used in complex systems such as mine hoists, cranes, ropeways, elevators, oil rigs, and cable-stayed bridges. Non-destructive damage detection for WRs is an important way to assess damage states to guarantee WR’s reliability and safety. With intelligent sensors, signal processing, and pattern recognition technology developing rapidly, this field has made great progress. However, there is a lack of a systematic review on technologies or methods introduced and employed, as well as research summaries and prospects in recent years. In order to bridge this gap, and to promote the development of non-destructive detection technology for WRs, we present an overview of non-destructive damage detection research of WRs and discuss the core issues on this topic in this paper. First, the WRs’ damage type is introduced, and its causes are explained. Then, we summarize several main non-destructive detection methods for WRs, including electromagnetic detection method, optical detection method, ultrasonic guided wave detection method, and acoustic emission detection method. Finally, a prospect is put forward. Based on the review of papers, we provide insight about the future of the non-destructive damage detection methods for steel WRs to a certain extent.
An accurate description of laneway space with self-localization is a key issue when coal mine rescue robots (CMRRs) perform post-disaster exploration and rescue missions. The 3D simultaneous localization and mapping (SLAM) is an effective but time-critical and highly challenging task in complex laneway scenarios, especially after disasters. In this paper, we propose a novel real-time 3D SLAM based on normally distributed transform (NDT) that employs pose graph optimization and loop closure to further improve mapping consistency. We innovatively extract floors and walls in the laneway as plane nodes to construct landmark constraints, in addition to applying pose nodes from the lidar odometry via NDT. A lightweight and effective loop detection method is conducted using odometry with an appearance-based approach to building a globally consistent map. The proposed method was evaluated on a public dataset, and field tests in an underground coal mine were performed. Results indicate that our algorithm can achieve lower computational complexity and drift, which can provide pose estimation and environment description for CMRRs to realize remote control assistance and automatic navigation in coal mine rescue missions.
Abstract:With the arrival of the big data era, it has become possible to apply deep learning to the health monitoring of mine production. In this paper, a convolutional neural network (CNN)-based method is proposed to monitor the health condition of the balancing tail ropes (BTRs) of the hoisting system, in which the feature of the BTR image is adaptively extracted using a CNN. This method can automatically detect various BTR faults in real-time, including disproportional spacing, twisted rope, broken strand and broken rope faults. Firstly, a CNN structure is proposed, and regularization technology is adopted to prevent overfitting. Then, a method of image dataset description and establishment that can cover the entire feature space of overhanging BTRs is put forward. Finally, the CNN and two traditional data mining algorithms, namely, k-nearest neighbor (KNN) and an artificial neural network with back propagation (ANN-BP), are adopted to train and test the established dataset, and the influence of hyperparameters on the network diagnostic accuracy is investigated experimentally. The experimental results showed that the CNN could effectively avoid complex steps such as manual feature extraction, that the learning rate and batch-size strongly affected the accuracy and training efficiency, and that the fault diagnosis accuracy of CNN was 100%, which was higher than that of KNN and ANN-BP. Therefore, the proposed CNN with high accuracy, real-time functioning and generalization performance is suitable for application in the health monitoring of hoisting system BTRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.