BackgroundCongenital scoliosis (CS) may lead to more serious pulmonary complications compared with idiopathic scoliosis after spinal fusion surgery. However, little has been reported about postoperative pulmonary complication events in patients with CS after spinal fusion surgery.ObjectiveTo investigate the incidence of and predictive factors of postoperative pulmonary complications following posterior spinal instrumentation and fusion surgery for the treatment of CS.MethodsWe retrospectively reviewed the records of 174 patients with CS (128 females and 46 males, mean age 16.4 years) treated with posterior spinal instrumentation and fusion surgery between January 2012 and April 2017. We extracted demographic, medical history, and clinical data, and investigated the major predictive factors for postoperative pulmonary complications by logistic regression and receiver-operating characteristic curves analyses.ResultsA total of 26 (14.9%) patients developed postoperative pulmonary complications, consisting of pleural effusion (10.9%), pneumonia (6.9%), pneumothorax (1.1%), atelectasis (2.3%), hypoxemia (6.3%), and respiratory failure (1.1%). Logistic regression analysis revealed that the predictive factors for postoperative pulmonary complications were age > 18.1 years (P = 0.039), a Cobb angle of > 77° (P = 0.011), operation time of > 430 min (P = 0.032), and blood transfusion volume > 1500 ml (P = 0.015).ConclusionsPostoperative pulmonary complications are among the main complications following posterior spinal instrumentation and fusion surgery in patients with CS. Such patients aged >18.1 years, with Cobb angles > 77°, operation times > 430 min, and/or blood transfusion volume of > 1500 ml may be more likely to develop postoperative pulmonary complications.
Nucleus pulposus (NP) cell senescence is involved in disc degeneration. The in situ osmolarity within the NP region is an important regulator of disc cell’s biology. However, its effects on NP cell senescence remain unclear. The present study was aimed to investigate the effects and mechanism of hyper-osmolarity on NP cell senescence. Rat NP cells were cultured in the in situ-osmolarity medium and hyper-osmolarity medium. The reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) was added along with the medium to investigate the role of oxidative injury. Cell cycle, cell proliferation, senescence associated β-galactosidase (SA-β-Gal) activity, telomerase activity, expression of senescence markers (p16 and p53) and matrix molecules (aggrecan and collagen II) were tested to assess NP cell senescence. Compared with the in situ-osmolarity culture, hyper-osmolarity culture significantly decreased cell proliferation and telomerase activity, increased SA-β-Gal activity and cell fraction in the G0/G1 phase, up-regulated expression of senescence markers (p16 and p53) and down-regulated expression of matrix molecules (aggrecan and collagen II), and increased intracellular ROS accumulation. However, addition of NAC partly reversed these effects of hyper-osmolarity culture on cellular senescence and decreased ROS content in NP cells. In conclusion, a hyper-osmolarity culture promotes NP cell senescence through inducing oxidative stress injury. The present study provides new knowledge on NP cell senescence and helps us to better understand the mechanism of disc degeneration.
Background Patients who have a congenital spinal deformity with a tethered cord generally are treated with prophylactic intradural detethering before deformity correction. However, the detethering procedure carries substantial risk, and it is not clear whether deformity correction can be performed without detethering. Questions/purposes To determine the (1) correction rate, (2) proportion of patients who experienced complications after surgery, and (3) neurological status after recovery from surgery in a group of patients with congenital spinal deformity and a tethered cord who were treated either with posterior spinal fusion only (PSF), pedicle-subtraction osteotomy (PSO), or a vertebral column resection (VCR), based on an algorithmic approach. Methods Between 2006 and 2016, we treated 50 patients surgically for a congenital spinal deformity and a tethered cord. We defined a congenital spinal deformity as one that was caused by failure of vertebral segmentation, failure of vertebral formation, or both, and we made the diagnosis of a tethered cord based on a conus medullaris lower than L2 level, or a diameter of the filum terminale greater than 2 mm, as shown on magnetic resonance image. Of those, nine patients were lost to followup before the 2-year minimum, leaving 41 for analysis at a mean followup of Each author certifies that neither he or she, nor any member of his or her immediate family, has funding or commercial associations (consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article. Clinical Orthopaedics and Related Research® neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA approval status, of any drug or device before clinical use. Each author certifies that his or her institution approved the human protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.