Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thickness ranging from 2 to 15 layers and photon energy spanning from 0.25 to 1.36 eV. Each few-layer black phosphorus exhibits a thickness-dependent unique infrared spectrum with a series of absorption resonances, which reveals the underlying electronic structure evolution and serves as its infrared fingerprints. Surprisingly, unexpected absorption features, which are associated with the forbidden optical transitions, have been observed. Furthermore, we unambiguously demonstrate that controllable uniaxial strain can be used as a convenient and effective approach to tune the electronic structure of few-layer black phosphorus. Our study paves the way for black phosphorus applications in infrared photonics and optoelectronics.
Atomically thin 2D-layered transition-metal dichalcogenides have been studied extensively in recent years because of their intriguing physical properties and promising applications in nanoelectronic devices. Among them, ReSe2 is an emerging material that exhibits a stable distorted 1T phase and strong in-plane anisotropy due to its reduced crystal symmetry. Here, the anisotropic nature of ReSe2 is revealed by Raman spectroscopy under linearly polarized excitations in which different vibration modes exhibit pronounced periodic variations in intensity. Utilizing high-quality ReSe2 nanosheets, top-gate ReSe2 field-effect transistors were built that show an excellent on/off current ratio exceeding 10(7) and a well-developed current saturation in the current-voltage characteristics at room temperature. Importantly, the successful synthesis of ReSe2 directly onto hexagonal boron nitride substrates has effectively improved the electron motility over 500 times and the hole mobility over 100 times at low temperatures. Strikingly, corroborating with our density-functional calculations, the ReSe2-based photodetectors exhibit a polarization-sensitive photoresponsivity due to the intrinsic linear dichroism originated from high in-plane optical anisotropy. With a back-gate voltage, the linear dichroism photodetection can be unambiguously tuned both in the electron and hole regime. The appealing physical properties demonstrated in this study clearly identify ReSe2 as a highly anisotropic 2D material for exotic electronic and optoelectronic applications.
A hyperbolic plasmonic surface supports highly directional propagating polaritons with extremely large density of states. Such plasmon polaritons have been realized in artificially structured metasurfaces. However, the upper bound of the achievable plasmon wave vector is limited by the structure size, which calls for a natural hyperbolic surface without any structuring. Here, we experimentally demonstrate a natural hyperbolic plasmonic surface based on thin films of WTe2 in the light wavelength range of 16 to 23 microns by far infrared absorption spectroscopy. The topological transition from the elliptic to the hyperbolic regime is further manifested by mapping the iso-frequency contours of the plasmon. Moreover, the anisotropy character and plasmon frequency exhibit prominent temperature dependence. Our study demonstrates the first natural platform to host 2D hyperbolic plasmons, which opens exotic avenues for the manipulation of plasmon propagation, light-matter interaction and light emission in planar photonics.
Interlayer interactions in 2D materials, also known as van der Waals (vdWs) interactions, play a critical role in the physical properties of layered materials. It is fascinating to manipulate the vdWs interaction, and hence to “redefine” the material properties. Here, we demonstrate that in-plane biaxial strain can effectively tune the vdWs interaction of few-layer black phosphorus with thickness of 2-10 layers, using infrared spectroscopy. Surprisingly, our results reveal that in-plane tensile strain efficiently weakens the interlayer coupling, even though the sample shrinks in the vertical direction due to the Poisson effect, in sharp contrast to one’s intuition. Moreover, density functional theory (DFT) calculations further confirm our observations and indicate a dominant role of the puckered lattice structure. Our study highlights the important role played by vdWs interactions in 2D materials during external physical perturbations.
Since the discovery of graphene, layered materials have attracted extensive interest owing to their unique electronic and optical characteristics. Among them, Dirac semimetals, one of the most appealing categories, have been a long-sought objective in layered systems beyond graphene. Recently, layered pentatelluride ZrTe 5 was found to host signatures of a Dirac semimetal. However, the low Fermi level in ZrTe 5 strongly hinders a comprehensive understanding of the whole picture of electronic states through photoemission measurements, especially in the conduction band. Here, we report the observation of Dirac fermions in ZrTe 5 through magneto-optics and magneto-transport. By applying a magnetic field, we observe a ffiffiffiffi B p dependence of the inter-Landau-level resonance and Shubnikov-de Haas (SdH) oscillations with a nontrivial Berry phase, both of which are hallmarks of Dirac fermions. The angle-dependent SdH oscillations show a clear quasi-two-dimensional feature with a highly anisotropic Fermi surface and band topology, in stark contrast to the three-dimensional (3D) Dirac semimetal such as Cd 3 As 2 . This is further confirmed by the angle-dependent Berry phase measurements and the observation of bulk quantum Hall effect (QHE) plateaus. The unique band dispersion is theoretically understood: the system is at the critical point between a 3D Dirac semimetal and a topological insulator phase. With the confined interlayer dispersion and reducible dimensionality, our work establishes ZrTe 5 as an ideal platform for exploring the exotic physical phenomena of Dirac fermions. NPG Asia Materials (2016) 8, e325; doi:10.1038/am.2016.166; published online 11 November 2016 INTRODUCTION Layered materials, formed by stacking strongly bonded layers with weak interlayer coupling, 1-10 have drawn immense attention in fundamental studies and device applications owing to their tunability in band structures and Fermi energy. 3,4,[11][12][13] Unlike other layered materials such as MoS 2 and BN, graphene stands out as an appealing candidate, as it is featured with a linear energy dispersion and low-energy relativistic quasi-particles. 9,14,15 Many exotic phenomena, such as a half-integer quantum Hall effect (QHE) 1,2 and Klein tunneling, 16 have been realized in graphene. Along this line, extensive efforts were also devoted to exploring new Dirac semimetal states in other layered systems beyond graphene. 5,6 Pentatelluride ZrTe 5 with a layered orthorhombic structure has been widely studied since the 1980s for its resistivity anomaly [17][18][19] and large thermopower. 20,21 For a long time, ZrTe 5 was considered to be a semimetal or degenerated semiconductor with a parabolic energy dispersion. 10,22 However, a recent study 7 revealed a linear dispersion in ZrTe 5 bulk states along with a chiral magnetic effect, hosting the signatures of a Dirac semimetal. Nevertheless, owing to the relatively
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.