Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20 dB). A measured coupling efficiency of -2.7 dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.
Germanium photodetectors are considered to be mature components in the silicon photonics device library. They are critical for applications in sensing, communications, or optical interconnects. In this work, we report on design, fabrication, and experimental demonstration of an integrated waveguide PIN photodiode architecture that calls upon lateral double Silicon/Germanium/Silicon (Si/Ge/Si) heterojunctions. This photodiode configuration takes advantage of the compatibility with contact process steps of silicon modulators, yielding reduced fabrication complexity for transmitters and offering high-performance optical characteristics, viable for high-speed and efficient operation near 1.55 μm wavelengths. More specifically, we experimentally obtained at a reverse voltage of 1V a dark current lower than 10 nA, a responsivity higher than 1.1 A/W, and a 3 dB opto-electrical cut-off frequency over 50 GHz. The combined benefits of decreased process complexity and high-performance device operation pave the way towards attractive integration strategies to deploy cost-effective photonic transceivers on silicon-on-insulator substrates.
Near-infrared (near-IR) Germanium (Ge) photodetectors monolithically integrated on top of silicon-on-insulator (SOI) substrates are universally regarded as key enablers towards chip-scale nanophotonics, with applications ranging from sensing and health monitoring to object recognition and optical communications. In this work, we report on the high-data-rate performance pin waveguide photodetectors made of lateral hetero-structured Silicon-Germanium-Silicon (Si-Ge-Si) junction operating under low reverse bias at 1.55 µm. The pin photodetector integration scheme considerably eases device manufacturing and is fully compatible with complementary metaloxide-semiconductor (CMOS) technology. In particular, the hetero-structured Si-Ge-Si photodetectors show efficiency-bandwidth products of ~9 GHz at-1 V and ~30 GHz at-3 V, with a leakage dark-current as low as ~150 nA, allowing a superior signal detection of high-speed data traffics. A bit-error-rate of 10-9 is achieved for conventional 10 Gbps, 20 Gbps and 25 Gbps data rates, yielding optical power sensitivities of-13.85 dBm,-12.70 dBm, and-11.25 dBm, respectively. This demonstration opens up new horizons towards cost-effective Ge pin waveguide photodetectors that combine fast device operation at low voltages with standard semiconductor fabrication processes, as desired for reliable on-chip architectures in next generation nanophotonics integrated circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.